Siemens Site Yearly Performance Evaluation Siemens Verio 3T 6-May-08

Table of Contents

Summary and Signature Page	2
Specific Comments	3
Site Information	4
Equipment Information	4
Table Position Accuracy	4
Magnetic Field Homogeneity	4
Slice Thickness Accuracy	4
Slice Crosstalk	5
Soft Copy Displays	6
RF Coil Performance Evaluation	
Coil Inventory List	7
Body Integrated	8
Body Matrix	10
Breast Array	12
Extremity - 8Ch.	16
Flex Coil - Large	17
Flex Coil - Small	19
Head Matrix	23
Neck Matrix	25
Shoulder Array - Large	28
Shoulder Array - Small	30
Spine Matrix	32
Wrist Coil	36
Appendix A: Magnet Homgeneity Map	39
Appendix B: Slice Thickness / Profiles / RF Crosstalk	51
Appendix C: ACR Phantom Analysis	55
Appendix D: Explanation of RF Coil Test Format	94

Site Name:	Siemens Site			MRAP # _	00532-02
Address				Survey Date:	5/6/08
City, State, Zip				Report Date: _	5/22/08
MRI Mfg:	Siemens	Model:	Verio	Field:	3T
MRI Scientist:	Moriel NessAiver, Ph.D.	Signature:	Monel	Ventiver, 6	h.O.
	Equipment Evalu	ation Tests		Pass Fail * N/A	
1.	Magnetic field homogeneity	v:			
2.	Slice position accuracy:	, ,			
3.	Table positioning reproduci	bility:			
4.	Slice thickness accuracy:	-			
5.	RF coils' performance:				
	a. Volume QD Coils				
	b. Phase Array Coils				
	c. Surface Coils				
6.	Inter-slice RF interference (Crosstalk):			
7.	Soft Copy Display				
				ass ail * /A	
	Evaluation of Site's Techno	logist QC Prog	gram	й й Ž	
l.	Set up and positioning accu	racy: (daily)			
2.	Center frequency: (daily)	• (1 • 1)			
3.	Transmitter attenuation or g	ain: (daily)			
4.	Geometric accuracy measur	ments: (daily)			
5.	Spatial resolution measuren	nents: (daily)			
6.	Low contrast detectability:	(daily)			
7.	Head Coil SNR (daily)				
8.	Body Coll SNK (weekly)	-1	(1-1)		
9.	Fast Spin Ecno (FSE/TSE)	gnosting levels	(daily)		
10.	riim quality control: (week	iy)			
11.	visual checklist: (weekly)				

Specific Comments and Recommendations

- 1. Large Flex coil has bad channel.
- The large oil sphere has a defect where the bottom support bracket attaches to the sphere which causes a large susceptibility artifact which makes it difficult to measure homogeneity.
- 3. The LCD display console is very good.
- 4. The SMPTE pattern printed from the Fuji camera's internal stored patterns lightens up too fast and peaks out at 80% (See page 6, red graph.) The signal sent from the scanner tries to compensate for this to some extent but it still doesn't match what is seen on the screen. The GE CT does a little better job than the MRI.
- 5. Shim in the axial plane is very good.
- 6. It is hard to run the auto-shim in the sagittal and coronal planes due to the limits of the magnet homogeneity and gradient linearity in the S/I direction combined with RF penetration difficulties. Shimming in the axial plane seems to work best.
- 7. <u>The BW and profiles of a standard 1 echo SE is fine in terms of range of thickness, however there is a large difference between the types of RF pulses. All other profiles (dual echo SE, FLASH, TSE and BLADE) all have problems, usually too large. This is typical with Siemens systems. All profiles can be seen in Appendix C.</u>
- 8. It is difficult to evaluate RF penetration on 3T systems but a visual comparison of the RF Field map obtained
 on your Verio DOES look better than I typically see on Trio systems.

9	The 5 gauss line is well restricted inside of the scan room.
10.	
11.	
12.	
13.	
_	
_	
_	

NOTE: Please be sure to read appendix D for an explanation of the format of this document.

S	ite Name:	Siemens S	bite							
(Contact		Title		Phone	e			eMail	
			Chief Tch.	Off.						
			Technolo	gist						
			Chief Te	ch.						
Fauinma	nt Inform	ation								
MDIM	nufaaturar:	ation		Modal	Varia		SNI	40116	Softwara	D150
amera Ma	mufacturer			Model:	veno		SN.	40110	Software:	B13 v
PACS Ma	mufacturer.	11	i)i	Model:			SN.		Software:	
11100 111	inunuoturor.	ACR P	hantom Nu	mber used:	J5909		511.			
				into er ubeu.	00707	-				
1. Table	Positionin	g Reprod	ucibility:							Pass
	Table mot	ion out/in:	IsoCenter	Out/In	Out/In	Out	t/In			
Meas	ured Phanto	m Center	-1.7	-1.7	-1.8	-1	.8			
		I								
2. Magn	etic Field	Homogen	eity	See append	lix A for fie	eld plo	ts.			PASS
	Last Yea	r CF:	N/A	Thi	is Year CF:	123	3244356	CF Cł	ange: N	A
		32 cm Wate	er Phantom		1			24 cm Oi	1 Phantom	
	10 cm	15 cm	20 cm	25 cm			10 cm	15 cm	20 cm	23 cm
							0.00	0.04	0 17	0 48
Axial:	0.03	0.06	0.09	0.13	A	Axial:	0.02	0.04	0.17	0.10
Axial: Coronal:	0.03 0.13	0.06 0.26	0.09 0.51	0.13 0.93	A Coi	Axial: ronal:	0.02	0.04	0.17	0.50
Axial: Coronal: Sagittal: Comments:	0.03 0.13 0.10 Used Siemen The shim in	0.06 0.26 0.22 ns FieldPlot : the Axial pla	0.09 0.51 0.45 sequence with ane is excelle	0.13 0.93 1.07 th TR 500, Fl ent out to abo	2 Cor Sag lip 45°, 5 ski ut ± 10 cm o	Axial: ronal: ittal: p 5, Fo of isoco	0.02 0.03 0.04 OV of 40 (H	0.04 0.06 0.12 (20) and 30 (ing the autos	0.17 0.29 0.46 oil)	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice	0.03 0.13 0.10 Used Siemen The shim in e sagittal and Thickness	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla Accuracy	0.09 0.51 0.45 sequence with ane is excelled nes due to the	0.13 0.93 1.07 th TR 500, Fl ent out to abo ne limited S/I	f Con Sag iip 45°, 5 ski ut ± 10 cm o range of ma	Axial: ronal: ittal: p 5, F(of isoco gnet/gi	0.02 0.03 0.04 OV of 40 (H enter. Runn radients.	0.04 0.06 0.12 20) and 30 (ing the autos	0.17 0.29 0.46 oil) him is difficu	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice	0.03 0.13 0.10 Used Siemer The shim in e sagittal and Fhickness	0.06 0.26 0.22 ns FieldPlot s the Axial pla d coronal pla Accuracy m M	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x	0.13 0.93 1.07 th TR 500, Fl ent out to abo ne limited S/I 256	f Cor Sag ip 45°, 5 ski ut ± 10 cm o range of ma (Slice	Axial: ronal: ittal: p 5, F(of isoco gnet/gr e #1 fr	0.02 0.03 0.04 OV of 40 (H enter. Runn radients.	0.04 0.06 0.12 (20) and 30 (ing the autos	0.17 0.29 0.46 oil) him is difficu	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice	0.03 0.13 0.10 Used Siemen The shim in e sagittal and FoV: 250m Sequen	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla Accuracy m M ce	0.09 0.51 0.45 sequence with ane is excelled nes due to the atrix: 256x TR	0.13 0.93 1.07 th TR 500, FI ent out to abo ne limited S/I 256 TE	f Con Sag $iip 45^\circ, 5 ski$ $ut \pm 10 \text{ cm of}$ range of ma (Slice Flip	Axial: ronal: ittal: p 5, Fe of isoce gnet/gr e #1 fr NSA	0.02 0.03 0.04 OV of 40 (H enter. Runn radients.	0.04 0.06 0.12 (20) and 30 (ing the autos (20) and 30 (hantom) A Target	0.17 0.29 0.46 oil) him is difficu Il values in 1 % Error	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice	0.03 0.13 0.10 Used Siemen The shim in e sagittal and Fhickness FOV: 250m Sequen SE (AC	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla Accuracy um M ce R)	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x TR 500	0.13 0.93 1.07 th TR 500, Fl ent out to abo ne limited S/I 256 TE 20	f Cor Sag ip 45°, 5 ski ut ± 10 cm o range of ma (Slice Flip 90	Axial: ronal: ittal: p 5, F(of isoco gnet/gr e #1 fr NSA 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. rom ACR F Calc 4.87	0.04 0.06 0.12 (20) and 30 (ing the autos (hantom) A Target 5	0.17 0.29 0.46 oil) him is difficu .ll values in 1 % Error -2.6%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice	0.03 0.13 0.10 Used Siemen The shim in e sagittal and Fhickness FOV: 250m Sequen SE (AC SE (20/80) L	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla d coronal pla Maccuracy m M ce R) o SAR	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x TR 500 2000	0.13 0.93 1.07 th TR 500, FI ent out to abo ne limited S/I 256 TE 20 20	$\frac{2}{100}$ $\frac{100}{100}$	Axial: ronal: ittal: p 5, F(of isoc gnet/gr e #1 fr NSA 1 1	0.02 0.03 0.04 0V of 40 (H enter. Runn radients. rom ACR F Calc 4.87 5.66	0.04 0.06 0.12 (20) and 30 (ing the autos Phantom) A Target 5 5	0.17 0.29 0.46 oil) him is difficu Il values in 1 % Error -2.6% 13.2%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemer The shim in e sagittal and FOV: 250m Sequen SE (AC SE (20/80) L SE (20/80) L	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla d coronal pla Mccuracy m M ce R) .0 SAR .0 SAR	0.09 0.51 0.45 sequence with the is excellent nes due to the atrix: 256x TR 500 2000 2000	0.13 0.93 1.07 th TR 500, Fl ent out to abo ne limited S/I 256 TE 20 20 80	f Con Sag ip 45°, 5 ski ut ± 10 cm o range of ma (Slico Flip 90 90 90 90	Axial: ronal: ittal: p 5, F0 of isoce gnet/gr e #1 fr NSA 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. com ACR F Calc 4.87 5.66 4.59	0.04 0.06 0.12 20) and 30 (ing the autos Phantom) A Target 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu .ll values in 1 % Error -2.6% 13.2% -8.2%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice	0.03 0.13 0.10 Used Siemen The shim in e sagittal and FOV: 250m Sequen SE (AC SE (20/80) L SE (20/80) L SE (20/80) No	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla Accuracy m M ce R) o SAR o SAR o SAR	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x TR 500 2000 2000 2000	0.13 0.93 1.07 th TR 500, FI ent out to abo ne limited S/I 256 TE 20 20 80 20	$\frac{1}{10}$	Axial: ronal: ittal: p 5, FC of isocc gnet/gr e #1 fr NSA 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. rom ACR F Calc 4.87 5.66 4.59 4.85	0.04 0.06 0.12 (20) and 30 ((ing the autos) (ing the autos) (hantom) A Target 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu ll values in 1 % Error -2.6% 13.2% -8.2% -3.0%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemen The shim in e sagittal and FOV: 250m Sequen SE (AC SE (20/80) L E (20/80) No E (20/80) No	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla d coronal pla MCCUTACY MM M Ce R) 0 SAR 0 SAR 0 SAR 0 SAR 0 SAR	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x TR 500 2000 2000 2000 2000 2000	0.13 0.93 1.07 th TR 500, FI ent out to abo ne limited S/I 256 TE 20 20 80 20 80	$\frac{1}{10}$	Axial: ronal: ittal: p 5, F(of isoc gnet/gr e #1 fr NSA 1 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. com ACR F Calc 4.87 5.66 4.59 4.85 3.64	0.04 0.06 0.12 20) and 30 (ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu Il values in 1 % Error -2.6% 13.2% -8.2% -3.0% -27.2%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemer The shim in e sagittal and FoV: 250m Sequen SE (AC SE (20/80) L SE (20/80) L SE (20/80) No SE (20/80) No SE (20/80) No	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla d coronal pla Accuracy m M ce R) .0 SAR .0 SAR	0.09 0.51 0.45 sequence with the is excellence with atrix: 256x TR 500 2000 2000 2000 2000 2000 2000	0.13 0.93 1.07 th TR 500, Fl ent out to abo ne limited S/I 256 TE 20 20 80 20 80 20 80 20	f Cor Sag $iip 45^{\circ}, 5 ski$ $ut \pm 10 cm c$ range of ma (Slice Flip 90 90 90 90 90 90 90 90 90	Axial: ronal: ittal: p 5, F0 of isoco gnet/gr e #1 fr NSA 1 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. rom ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48	0.04 0.06 0.12 20) and 30 (ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu .11 values in n % Error -2.6% 13.2% -8.2% -3.0% -27.2% 9.6%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 1	0.03 0.13 0.10 Used Siemen The shim in e sagittal and FOV: 250m Sequen SE (AC SE (20/80) L SE (20/80) L SE (20/80) No SE (20/80) SE (20/80) SC SE (20/80) SC	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla Accuracy m M ce R) o SAR o SAR o SAR ormal RF rrmal RF rast RF	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x TR 500 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	0.13 0.93 1.07 th TR 500, FI ent out to abo ne limited S/I 256 TE 20 20 80 20 80 20 80 20	P Cor Sag ip 45°, 5 ski ut ± 10 cm o range of ma (Slice Flip 90 90 90 90 90 90 90 90 90 90	Axial: ronal: ittal: p 5, F0 of isoc gnet/gr e #1 fr NSA 1 1 1 1 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. rom ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48 4.67	0.04 0.06 0.12 20) and 30 (ing the autos ing the autos 'hantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu Ill values in n % Error -2.6% 13.2% -8.2% -3.0% -27.2% 9.6% -6.6%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemen The shim in e sagittal and FOV: 250m Sequen SE (AC SE (20/80) L SE (20/80) L SE (20/80) No SE (20/80) No SE (20/80) No SE (20/80) F SE (20/80)	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla d coronal pla Accuracy m M ce R) to SAR to SAR o SAR ormal RF trast RF Sast RF SH	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x TR 500 20	0.13 0.93 1.07 th TR 500, FI ent out to abo ne limited S/I 256 TE 20 20 80 20 80 20 80 20 80 20 80 20	f Con Sag $iip 45^{\circ}, 5 ski$ $ut \pm 10 cm d$ range of ma (Slice Flip 90 90 90 90 90 90 90 90 90 90	Axial: ronal: ittal: p 5, F(of isoc gnet/gn e #1 fr NSA 1 1 1 1 1 1 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. om ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48 4.67 6.39	0.04 0.06 0.12 20) and 30 (ing the autos ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu ll values in n % Error -2.6% 13.2% -8.2% -3.0% -27.2% 9.6% -6.6% 27.8%	0.50 0.69 It in th
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemer The shim in e sagittal and FoV: 250m Sequen SE (AC SE (20/80) L E (20/80) L E (20/80) No E (20/80) No E (20/80) F E (20/80) F SE	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla Accuracy m M ce R) o SAR o SAR frmal RF fast RF Sast RF SH AR	0.09 0.51 0.45 sequence with the is excellence is excellence with atrix: 256x TR 500 200	0.13 0.93 1.07 th TR 500, Fl ent out to abo he limited S/I 256 TE 20 20 80 20 12 12 12 12 12 12 12 12 12 12	f Cor Sag $ip 45^{\circ}, 5 ski$ $ut \pm 10 cm of range of ma (Slice Flip 90 90 90 90 90 90 90 90 90 90$	Axial: ronal: ittal: p 5, F0 of isoco gnet/gn e #1 fr NSA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. om ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48 4.67 6.39 5.52 4.00	0.04 0.06 0.12 20) and 30 (ing the autos ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu .11 values in n % Error -2.6% 13.2% -8.2% -3.0% -27.2% 9.6% -6.6% 27.8% 10.4%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemen The shim in e sagittal and Fickness FOV: 250m Sequen SE (AC SE (20/80) L E (20/80) L E (20/80) No E (20/80) No E (20/80) No E (20/80) No E (20/80) F SE (2	0.06 0.26 0.22 ns FieldPlot : the Axial pla d coronal pla d coronal pla Accuracy m M ce R) o SAR o SAR o SAR o SAR o SAR o SAR ormal RF rmal RF rast RF SH AR 1 RF	0.09 0.51 0.45 sequence with the is excelled nes due to the attrix: 256x TR 500 2000 2	0.13 0.93 1.07 th TR 500, FI ent out to abo ne limited S/I 256 TE 20 20 80 20 12 12 12 12 12 12 12 12 12 12	A Cor Sag ip 45°, 5 ski ut ± 10 cm o range of ma (Slice Flip 90 90 90 90 90 90 90 90 90 90 90 90 90	Axial: ronal: ittal: p 5, F(of isoc gnet/gr e #1 fr NSA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. com ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48 4.67 6.39 5.52 4.80 5.22	0.04 0.06 0.12 20) and 30 (ing the autos ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu ll values in n % Error -2.6% 13.2% -8.2% -3.0% -27.2% 9.6% -6.6% 27.8% 10.4% -4.0%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemen The shim in e sagittal and FoV: 250m Sequen SE (AC SE (20/80) L E (20/80) L E (20/80) No E (20/80) No	0.06 0.26 0.22 Ins FieldPlot : the Axial plated d coronal plated d coronal plated Accuracy m M ce R) o SAR o SAR ormal RF ormal RF ormal RF ormal RF ormal RF SAR AR 1 RF RF SAR	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x TR 500 20	0.13 0.93 1.07 th TR 500, Fl ent out to abo ne limited S/I 256 TE 20 20 80 80 80 80 80 80 80 80 80 8	f Con Sag ip 45°, 5 ski ut ± 10 cm of range of ma (Slico Flip 90 90 90 90 90 90 90 90 90 90	Axial: ronal: ittal: p 5, F0 of isoco gnet/gn e #1 fr NSA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. om ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48 4.67 6.39 5.52 4.80 5.28 6.92	0.04 0.06 0.12 20) and 30 (ing the autos ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 1	0.03 0.13 0.10 Used Siemer The shim in e sagittal and Fhickness FOV: 250m Sequen SE (AC SE (20/80) L E (20/80) No SE (20/80) No SE (20/80) P T1-FLAS SE Lo S SE Norma SE Fast TSE(19) Lo SE(10) Nor	0.06 0.26 0.22 Ins FieldPlot : the Axial pla d coronal pla Accuracy m M ce R) o SAR o SAR o SAR ormal RF ormal RF ormal RF SH AR 1 RF RF o SAR o SAR o SAR mal RF	0.09 0.51 0.45 sequence with the is excellence with atrix: 256x TR 500 2000	0.13 0.93 1.07 th TR 500, FI ent out to abo he limited S/I 256 TE 20 20 80 20 10 10 10 10 10 10 10 10 10 1	f Cor Sag $ip 45^{\circ}, 5 skij$ $ut \pm 10 cm of range of ma (Slice Flip 90 90 90 90 90 90 90 90 90 90$	Axial: ronal: ittal: p 5, F0 of isoco gnet/gr e #1 fr NSA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. om ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48 4.67 6.39 5.52 4.80 5.28 6.93 6.72	0.04 0.06 0.12 20) and 30 (ing the autos ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemen The shim in e sagittal and FOV: 250m Sequen SE (AC SE (20/80) L E (20/80) No E (20/80) No E (20/80) No E (20/80) No E (20/80) F SE (20/80) F	0.06 0.26 0.22 Ins FieldPlot : the Axial plated d coronal plated d coronal plated Accuracy Mm M ce R) 0 SAR 0 SAR 0 SAR 0 SAR 0 SAR 0 SAR 1 RF SH AR 1 RF 0 SAR 1 RF 0 SAR mal RF 0 SAR 1 RF 0 SAR	0.09 0.51 0.45 sequence with the is excelled the is	0.13 0.93 1.07 th TR 500, FI ent out to abo ne limited S/I 256 TE 20 20 80 20 98 100 97 98 100 97 97 97 97 100 97 97 97 97 97 97 97 97 97 97	$\begin{array}{c} $	Axial: ronal: ittal: p 5, F0 of isoc gnet/gn e #1 fr NSA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. om ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48 4.67 6.39 5.52 4.80 5.28 6.93 6.72 6.67	0.04 0.06 0.12 20) and 30 (ing the autos ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.17 0.29 0.46 oil) him is difficu Ill values in n % Error -2.6% 13.2% -8.2% -3.0% -27.2% 9.6% -6.6% 27.8% 10.4% -4.0% 5.6% 38.6% 34.4% 33.4%	0.50 0.69
Axial: Coronal: Sagittal: Comments: 3. Slice 7	0.03 0.13 0.10 Used Siemer The shim in e sagittal and FoV: 250m Sequen SE (AC SE (20/80) L E (20/80) L E (20/80) No E (20/80) No E (20/80) No E (20/80) F SE (20/80) F S	0.06 0.26 0.22 Ins FieldPlot : the Axial plated d coronal plated d coronal plated Accuracy mm M ce R) o SAR o SAR ormal RF ormal RF ormal RF SH AR 1 RF RF SH AR 1 RF RF SAR mal RF of SAR mal RF of SAR F(35)	0.09 0.51 0.45 sequence with the is excelled nes due to the atrix: 256x TR 500 20	0.13 0.93 1.07 th TR 500, Fl ent out to abo ne limited S/I 256 TE 20 20 80 21 12 12 12 12 12 12 13 10 10 11 11 11 11 11 11 11 11	f Cor Sag $iip 45^{\circ}, 5 skii$ $ut \pm 10 cm of range of ma (Slico Flip 90 90 90 90 90 90 90 90 90 90$	Axial: ronal: ittal: p 5, F0 of isoco gnet/gn e #1 fr NSA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1	0.02 0.03 0.04 OV of 40 (H enter. Runn radients. om ACR F Calc 4.87 5.66 4.59 4.85 3.64 5.48 4.67 6.39 5.52 4.80 5.52 4.80 5.28 6.93 6.72 6.67 6.30	0.04 0.06 0.12 20) and 30 (ing the autos ing the autos Phantom) A Target 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.11 0.29 0.46 oil) him is difficu '''	0.50 0.69

4. Slice Crosstalk (RF interference)

The following data were obtained using the ACR phantom slice thickness wedges to measure the slice profile of a four T1 weighted sequences when the slice gap varies from 200% down to 0% (contiguous) As the slices get closer together it is expected that the edges of the slices will overlap causing a deterioration of the slice profile. The data shown below clearly demonstrates this effect once the gap drops below 40-50%. What's interesting is how large the variation is in the starting slice thickness for each type of RF pulse. All of the slice profiles can be seen in Appendix B. There you can see that the Fast RF pulse has the squarest profile (and the most accurate) while the Normal is almost rectangular. The T1 FLASH sequence's profile is almost gaussian. This is expected for a short TE gradient echo. What is not expected is that the Full Width Half Maximum value should be 6.5 mm when 5.0 was requested.

Sequence Type	TR	TE	FOV (cm ²)	Matrix	NSA	Thickness	# of slices
SE Lo SAR	500	12	25	256x256	1	5	11
SE Normal	500	12	25	256x256	1	5	11
SE Fast RF	500	12	25	256x256	1	5	11
T1 FLASH	350	2.58	25	256x256	2	5	11

Skip	SE Low SAR	SE Normal	SE Fast	T1 FLASH
0	5.06	4.51	4.86	6.07
0.2	4.96	4.39	4.85	6.13
0.5	4.96	4.53	4.89	6.18
1	5.16	4.68	4.99	6.27
1.5	5.31	4.63	5.12	6.35
2	5.33	4.73	5.21	6.39
2.5	5.46	4.82	5.25	6.46
5	5.52	4.8	5.28	6.49
10	5.49	4.86	5.27	6.47

5. Soft & Hard Copy Displays

Luminance Meter Make/Model: Tektronix J16 Digital Photometer

Monitor Description: Siemens LCD

Luminance Measured: Ft. lamberts

Measured Data						
Which Monitor	Center of Image Display	Top Left Corner	Top Right Corner	Bottom Left Corner	Bottom Right Corner	
Console	38.3	34.1	36.8	34.2	37.2	

Uniformity				
MAX	MIN	Percent Delta		
38.3	34.1	12%		

Cal Expires:

SMPTE
OK?
Y

4/6/06

% delta =200% x (max-min)/(max+center) (>30% is action limit)

Minimum Brightness must be > 26.24 Ft. Lamberts

The LCD display console is very good. The SMPTE pattern printed from the Fuji camera's internal stored patterns

lightens up too fast and peaks out at 80% (red graph). The signal sent from the scanner tries to compensate for this

to some extent but it still doesn't match what is seen on the screen. The GE CT does a little better job than the MRI.

Donaity	Ft-	MRI	Fuji	GE CT
Density	Lamber	Density	Density	Density
0	0.10	-2.89	-2.93	-2.88
5	0.26	-2.34	-2.39	-2.4
10	0.41	-2.07	-2.04	-2.1
20	1.14	-1.65	-1.59	-1.71
30	2.44	-1.32	-1.23	-1.38
40	4.38	-1.09	-0.97	-1.17
50	7.23	-0.84	-0.72	-0.94
60	11.16	-0.63	-0.50	-0.75
70	16.1	-0.44	-0.30	-0.56
80	22.3	-0.31	-0.15	-0.43
90	29.9	-0.24	-0.15	-0.34
95	35.1	-0.2	-0.15	-0.33
100	37.7	-0.19	-0.15	-0.31

Coil and Other Hardware Inventory List

Site Name Siemens Site

ACR Magnet # 02 Nickname Verio

Activ	e Coil Description	Manufacturer	Model	Rev.	Mfg. Date	SN	Channels
	Body Integrated						1
	Body Matrix	Siemens	08622651			1649	6
	Breast Array	Invivo			Mar, 2007	U23005	7
	Extremity - 8 Ch.	Invivo	8622693		Jan, 2008	001185	8
	Flex Coil - Large	Siemens	08625761			1143	4
	Flex Coil - Small	Siemens	08625779			1143	4
	Head Matrix	Siemens	08622644			1362	12
	Neck Matrix	Siemens	08622677			1358	4
	Shoulder Array - Large	Invivo	8623626		Jan, 2008	S001221	4
	Shoulder Array - Small	Invivo	8622719		Jan, 2008	S001210	4
	Spine Matrix	Siemens	08622743			1351	24
	Wrist Coil	Invivo	8625621		Sep, 2007	S1056	8
							7

RF Coil Performance Evaluation Coil: Body Integrated Mfg.:	Ny 56 256	Test Date: Model: Revision: SN:	5/6/2008
Analysis	of Test Image		
Measured Data		Calculate	ed Results
Back Nois Label Mean Max Min ground SD	e Noise Type	Mean Normal- SNR ized	Max Uni- SNR formity
N 1,980 2,089 1,917 1.4 17.9'	7 NEMA	77.9 35.9	82.2 95.7%
A 1,979 2,088 1,916 37.9 16.8	9 Air	76.8 35.4	81.0 95.7%
Mean: 1980 ROI M: 1.37 ROIsd: 17.97 Google ROI Area: 385.67	Mean: 1979	Air M: 37.8 Airsd: 16.8 0.2088 5.67	79
lest	Images		

<u> </u>	<u>) Il Pert</u>	orman		uation		1051			Test Date:	5/	6/2008
Coil:	Body In	tegrated				140			Model:		
Mfg.:							A		Revision:		
ig. Date:			Coil ID:	1657	0	The second			SN:		
hantom:	<u>32 cm wa</u>	ter sphere								# of Cha	annels <u>1</u>
Sequence TR TE Plane FOV Nx Ny BW NSA Thickness Gap SE 300 20 T 50 256 256 1 3 -											
Seque SE Coil Mod	te: Body			FOV 50	Nx 256	Ny 256		BW 25.6	NSA Th	3	Gap _
Seque SE Coil Moo	de: <u>Body</u>	<u>te</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>	Plane T T Pasured	FOV 50 Analy	Nx 256 /sis of	Ny 256 Test Ima	ge	BW 25.6	NSA TH	aickness 3 d Resul	Gap -
Seque SE Coil Moo	de: Body	<u>TE</u> 0 20 20 Max	easured	FOV 50 Analy Data Back ground	Nx 256 /sis of '	Ny 256 Test Ima Noise Type	[ge 	BW 25.6	NSA Th 1	d Resul	Gap - - ts Uni- formity
Coil Mod	de: <u>Body</u> Mean	<u>те</u> 0 20 20 Мах 413	easured Min 65	FOV 50 Analy Data Back ground 0.1	Nx 256 /sis of SD 16.66	Ny 256 Test Ima Noise Type NEMA	nge 	BW 25.6 (Mean SNR 7.5	NSA Tr 1 Calculated Normal- ized 3.5	d Resul Max SNR 17.5	Gap - ts Uni- formity 27.2%

Test Images

RF Coil Performance Evaluation	Tost Date: 5/6/2008									
Coil: Body Matrix	Model: 08622651									
Mfg.: Siemens	Revision:									
Mfg. Date: Coil ID: 1649	SN: 1649									
Phantom: 2 cylinders	# of Channels 6									
SequenceTRTEPlaneFOVNxNyBWNSAThicknessGapSE30020T5025625625.613-										
SE 300 20 T 50 256 256 25.6 1 3 -										
Coil Mode: B0,1										
Analysis of Composit	te Image									
Measured Data	Calculated Results									
Back Noise Noise Label Mean Max Min ground SD Type	e Mean Normal- Max Uni- SNR ized SNR formity									
N 786 1,323 388 0.2 2.45 NEMA	A 226.9 104.6 381.9 45.4%									
A 786 1,321 388 5.8 2.24 Air										
Analysis of Uncombine	ed Images									
Measured Data	Calculated Results									
Ch Mean Max SD Type	SNR Mean SNR Max									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
3 565 865 2.15 Air	172.2 100% 263.6 97%									
4 590 852 2.45 Air	157.8 92% 227.9 84%									
	Channel 1 Channel 2									
	Mean: 465 Air M: 3.58 Mean: 595 Air M: 4.12 Airsd: 2.15 Airsd: 2.45									
Mean: 786 ROT M: 0.24 Mean: 786 Air M: 5.83 ROIsd: 2.45 Airsd: 2.24										
	236									
	ROI Area: 155.40 ROI Area: 155.40 Macan: 565 Air M: 2.58 Macan: 500 Air M: 4.12									
	Airsd: 2.15 Airsd: 2.45									
	Q368 Q368 Q368 Q368 Q368 Q368 Q368 Q368									
ROI Area: 150.86 ROI Area: 150.86 C 535 C 535										
Composites	ROI Area: 150.86 ROI Area: 150.86									
	Channel 3 Channel 4									

RF Coil Performance Evaluation	Test Date: 5/6/2008
Coil: Body Matrix	Model: 08622651
Mfg.: Siemens	Revision:
Mfg. Date: Coil ID: 1649	SN: 1649
Phantom: 2 cylinders	# of Channels
SequenceTRTEPlaneFOVNxSE30020C50256	NyBWNSAThicknessGap25625.613-
Coil Mode: B0,1	
Analysis of Com	posite Image
Measured Data	Calculated Results
Label Mean Max Min ground SD	Noise Mean Normal- Max Uni- Type SNR ized SNR formity
N 753 1,384 255 0.5 2.44 A 753 1,383 256 5.8 2.19	NEMA 218.3 100.7 401.1 31.1% Air 225.3 103.9 413.8 31.2%
	AII 103.9 413.8
Analysis of Uncom Measured Data	Iblined Images
	Mean % of Max % of
Ch Mean Max SD Type	SNR Mean SNR Max 132.6 100% 327.1 01%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 397 1,139 2.20 Air	118.3 89% 339.3 95% 120.8 088/ 258.6 1008/
4 495 1,308 2.50 Air	
	Channel 1 Channel 2
	Mean: 445 Air M: 3.67 Mean: 488 Air M: 4.26 Airsd: 2.20 Airsd: 2.50
Mean: 753 ROI M: 0.50 Mean: 753 Air M: 5.7 ROled: 2.44 Aired: 2.1	
BUSU. 2.44	
0 1984	○ 1098
	ROI Area: 470.95 ROI Area: 470.95
	Mean: 397 Air M: 3.67 Mean: 495 Air M: 4.28 Airsd: 2.20 Airsd: 2.50
255	⊂19 O 1288
ROI Area: 455.82 ROI Area: 455.82	
Composites	0 1169
Compositor	ROI Area: 455.82 ROI Area: 455.82
	Channel 5 Channel 4

RF Coil Performance Evaluation		Test Date:	5/6/2008
Coil: Breast Array		Model:	
Mfg.: Invivo		Revision :	
Mfg. Date: <u>3/1/2007</u> Coil ID: <u>1654</u>		SN:	U23005
Phantom: Two Small Bottles			# of Channels
SequenceTRTEPlaneFOVSE30020T50	Nx Ny BW 256 256 25.73	NSA Th	ickness Gap 3 -

Coil Mode: a LBR;RBR

Analysis of Composite Image

	Measured Data								Calculated Results				
Label	Mean	Max	Min	Back ground	Noise SD	Noise Type		Mean SNR	Normal- ized	Max SNR	Uni- formity		
NR	1,131	1,762	472	0.2	1.54	NEMA		519.4	240.1	809.2	42.3%		
NL	957	1,479	475	0.5	1.25	NEMA		541.4	250.3	836.8	48.6%		
AR	1,132	1,763	472	4.2	1.63	Air		455.1	210.4	708.8	42.2%		
AL	957	1,481	476	4.2	1.64	Air		382.4	176.8	591.8	48.6%		

Analysis of Uncombined Images

	M	easured	Data			Calculated				
Ch	Mean	Max	Noise SD	Noise Type	Mean SNR	% of Mean	Max SNR	% of Max		
RB1	665	1,335	1.43	Air	304.7	72%	611.8	91%		
RB2	504	677	0.78	Air	423.4	100%	568.8	84%		
RB3	446	764	0.76	Air	384.6	91%	658.8	98%		
MBR	447	974	1.28	Air	228.8	54%	498.6	74%		
LB1	377	609	0.74	Air	333.9	79%	539.3	80%		
LB2	478	1,164	1.13	Air	277.2	65%	675.0	100%		
LB3	492	659	0.78	Air	413.3	98%	553.7	82%		
MBR	330	891	1.28	Air	168.9	40%	456.2	68%		

When using both sides simultaneously, the left side has roughly 16% lower signal overall than the right side (Air SNR) but slightly better SNR when looking at the subtracted images (NEMA method).

RF Coil Performance Evaluation		Test Date:	5/6/2008
Coil: Breast Array		Model:	
Mfg.: Invivo		Revision :	
Mfg. Date: <u>3/1/2007</u> Coil ID: <u>1654</u>		SN:	U23005
Phantom: Two Small Bottles			# of Channels7
SequenceTRTEPlaneFOVSE30020C40	Nx Ny BW 256 256 25.73	NSA Th	ickness Gap 3 -

Coil Mode: b LBR;RBR

Analysis of Composite Image

		М	easured	Calculated Results						
Label	Mean	Max	Min	Back ground	Noise SD	Noise Type	Mean SNR	Normal- ized	Max SNR	Uni- formity
NR	1,290	1,692	1,069	-0.4	2.69	NEMA	339.1	245.0	444.8	77.4%
NL	1,008	1,071	904	-0.3	2.40	NEMA	297.0	214.6	315.6	91.5%
AR	1,290	1,693	1,071	7.2	2.22	Air	380.8	275.1	499.7	77.5%
AL	1,009	1,072	906	7.2	2.22	Air	297.8	215.2	316.4	91.6%

Analysis of Uncombined Images

	Me	easured	Data			Calculat	ed Results
Ch	Mean	Max	Noise SD	Noise Type	Mean SNR	% of Mean	Max SNR
RB2	575	620	1.13	Air	333.5	100%	359.5
RB3	494	606	1.08	Air	299.7	90%	367.7
RB1	768	1,069	2.18	Air	230.9	69%	321.3
MBR	585	970	1.91	Air	200.7	60%	332.8
LB2	528	597	1.69	Air	204.7	61%	231.5
LB3	572	652	1.12	Air	334.7	100%	381.5
LB1	410	546	1.04	Air	258.3	77%	344.0
MBR	364	536	1.91	Air	124.9	37%	183.9

There appears to be significant assymetry in the MBR (middle breast) channel. The right side has substantially higher signal. This results in a 22% difference in the composite image left to right. However, this type of asymmetry is common on Trio systems with this coil.

Chan	nel 1	Chanr	nel 2	Channe	el 3	Channel 4		
Mean: 575	Air M: 1.59 Airsd: 1.13	Mean: 494	Air M: 1.50 Airsd: 1.08	Mean: 768	Air M: 3.62 Airsd: 2.18	Mean: 585	Air M: 3.10 Airsd: 1.91	
2308 820		0 895, 364		0 1069 0 585		C 770		
ROI Area: 79.71		ROI Area: 79.71		ROI Area: 79.71		ROI Area: 79.71		
Mean: 528	Air M: 2.67 Airsd: 1.69	Mean: 572	Air M: 1.56 Airsd: 1.12	Mean: 410	Air M: 1.42 Airsd: 1.04	Mean: 364	Air M: 3.10 Airsd: 1.91	
	D 47 P 597		0 852 517		0546		0 555	
ROI Area: 75.92		ROI Area: 75.92		ROI Area: 75.92		ROI Area: 75.92		
Chan	nel 5	Chanr	nel 6	Channe	el 7			

% of Max 94% 96% 84% 87% 61% 100% 90% 48%

F Mfç Ph	Coil: Mfg.: g. Date: antom: Seque	Dil Perf Breast 2 Invivo 3/1/2007 Two Sma ence TF 2 30	Orman Array All Bottles R TE 0 20	Coil ID:	uation 1654 FOV 50	Nx 256	Ny 256		BW 25.73	Test Dat Mode Revisio S NSA	e:	/6/2008 U23005 hannels 7 Gap -
(Coil Mo	de: <u>c LB</u> F	R (Left Bro	east)	Analysis	 s of Cor	nposite	Imag	le			
			М	easured	Data				(Calculat	ted Resu	lts
	Label	Moon	Mox	Min	Back	Noise	Noise		Mean	Normal	- Max	Uni-
I	Label	Mean	1 244	455				Γ	542.0	250.6	778.6	53.6%
	A	866	1,244	456	2.7	1.13	Air	-	472.9	218.6	679.3	53.6%
				100		1120		L				
_				A	nalysis	of Unco	mbined	Imag	ges			
		M	easured	Data					Ca	Iculate	d Results	5
				Noise	Noise	-		Me	an	% of	Max	% of
		Mean	Max			1		SNR Mean			SNR	Max
	LB1	420	1.014	1.02	Air	-		<u>327.7</u> 79% 5 269.8 65%			651.5	100%
	LB3	493	683	0.78	Air			414	4.2	100%	573.8	88%
	MBR	307	844	1.12	Air	1		179	9.6	43%	493.8	76%
	ean: 866	ide has 13%	6 better SNI R01 M: -0.2 R01sd: 1.1	Rol Area Roj Area	ight.when.u	Air M: 2 Air SD:	de.only	Mean: 370 R0I Area: 19 Mean: 493 R0I Area: 19	Channel (51))1.8	1 Ir M: 0.85 IrSD: 0.74 Roll Ir M: 0.94 Mea 623 Roll Roll	Channe n: 420 Area: 191.8 n: 307	AIR M: 1.38 AIRSD: 1.02 01014 112 AIR M: 1.55 AIRSD: 1.12 3214 0 24
								ROI Area: 15	Channel	3	Channe	4

RF C Coil Mfg. Mfg. Date Phantom Sequ S Coil Mo	oil Perf E Breast 4 Invivo 3/1/2007 Two Sma ence TF 30 ode: d RB	Orman Array All Bottles R TE 10 20 R (Right E)	Ce Eval	uation 1654 FOV 50	Nx 256	Ny 256		BW 25.73	Test Date Mode Revision SM - NSA 1	e: 5/	6/2008 23005 annels 7 Gap -	
				Analysis	s of Cor	nposite	Imag	ge				
		Μ	easured	Data			_		Calculat	ed Resul	ts	
Label	Mean	Max	Min	Back ground	Noise SD	Noise Type		Mean SNR	Normal- ized	- Max SNR	Uni- formity	
Ν	1,082	1,694	433	-0.7	1.96	NEMA		390.4	180.5	611.2	40.7%	
Α	1,081	1,693	433	3.7	1.70	Air		416.7	192.7	652.6	40.7%	
			А	nalysis	of Unco	mbined	Ima	ges				
	M	easured	Data					С	alculated	d Results		
Ch	Mean	Max	Noise SD	Noise	-		Me	ean	% of	Max	% of	
RB1	613	1,305	1.52	Air]		26	4.3	66%	562.6	88%	
RB2	534	737	0.88	Air			39	7.7	100%	548.8	86%	
RB3	477	787	0.81	Air	-		38	5.9	97%	636.7	100%	
	433	909	1.30		J		20	5.0	3270	409.0	/4/0	
The right	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											

RF Coil Performance Evaluation Coil: Extremity - 8 Ch. Mfg.: Invivo Mfg. Date: 1/1/2008 Coil ID: 1652 Phantom: Small Bottle Sequence TR TE Plane FOV SE 300 20 T 25 Coil Mode: Knee						Ny 256	B 25	W .6	Test Date Model Revision SN	: : : : # of Ch <u>Thickness</u> 3	/6/2008 622693 001185 annels <u>8</u> Gap -
				Analysis	s of Con	nposite	mage				
		M	easured	Data				C	Calculate	ed Resul	ts
Label	Mean	Max	Min	Back ground	Noise SD	Noise Type	M S	ean NR	Normal- ized	Max SNR	Uni- formity
N	1,302	1,733	936	0.3	1.97	NEMA	40	7.4	862.2	622.1	70.1%
Α	1,302	1,733	935	11.4	2.33	Air	30	6.2	675.5	487.4	70.1%
	Me	easured	A Data	nalysis	of Unco	mbined	Images	Ca	Iculated	Results	
			Noise	Noise			Mean		% of	Мах	% of
Ch 1	Mean 450	Max		Type Air	1		SNR 129.3		Mean	SNR 413.3	Max
2	323	1,430	2.00	Air	1		105.8		82%	330.9	80%
3	396	1,142	2.11	Air			123.0		95%	354.7	86%
4	308	1,027	1.92	Air			105.1		81%	350.5	85%
5	394	1,163	2.03	Air			127.2		98%	375.4	91%
6	410	1,227	2.17	Air	-		123.8		96%	370.5	90%
7	328	885	1.97	Air	-		109.1		84%	294.4	71%
8	3/3	1,221	2.13		J		114.8		89%	3/5.0	91%
Mean: 13 ROI Area	02 ROI 1 ROIs 1733 936	M: 0.33 Mear d: 1.97 ROI. ROI.	n: 1302 0 1733 99 Area: 88.57 S	Air M: 11.37 Airsd: 2.33	Cha Mean: 450 O 14: ROI Area: 88.9 Mean: 394 53 ROI Area: 88.9	Air M: 3.84 Me Airsd: 2.28 Me 39 142 57 RO Airsd: 2.23 Me 57 RO 57 RO 57 RO	Channel an: 323 Air 106 C I Area: 88.57 an: 410 Air 0: 1227 C I Area: 88.57 Channel	2 M: 3.27 1010 M: 3.60 1010 M: 3.60 118	Channel Mean: 398 Air An C98 C98 C98 C98 C98 C98 C98 C98 C98 C98	3 Cha M: 3.48 sd: 2.11 Mean: 308 rd: 2.11 Mean: 308 ROI Area: M: 3.20 ROI Area: ROI Area: 7 Cha	nnel 4 Air M: 3.11 Airsd: 1.92 47 68.57 86.57 0 Air M: 3.54 Airsd: 2.13 40 104 104 104 104 104 105 104 105 104 105 105 105 105 105 105 105 105

RF Coil Performance Evaluation Coil: Flex Coil - Large Mfg.: Siemens Mfg. Date: Coil ID: 1650 Phantom: Large Cylinder Sequence TR TE SE 300 20 T 36 256 2: Coil Mode: FL Port 1	Test Date: 5/6/2008 Model: 08625761 Revision:							
Analysis of Composit	e Image							
Measured Data	Calculated Results							
Label Mean Max Min ground SD Type	Mean Normal- Max Uni- SNR ized SNR formity							
N 818 1,349 376 0.2 2.86 NEM/ A 818 1.349 371 9.3 2.37 Air	A 202.3 205.2 333.6 43.6% 226.2 229.4 373.0 43.1%							
Measured Data	Calculated Results							
Ch Mean Max Noise SD Noise Type 1 84 195 2.44 Air 2 511 1,065 2.47 Air 3 362 1,021 2.49 Air 4 424 844 2.26 Air	Mean SNR % of Mean Max SNR % of Max 22.6 17% 52.4 19% 135.6 100% 282.6 100% 95.3 70% 268.7 95% 122.9 91% 244.7 87%							
Channel #1. is. dead. Channel #1. is. dead. Mean: 818 ROI M: 0.15 ROIsd: 2.86 376 376 376 Channel 1 Channel 2 Mean: 818 Air M: 9.29 Airsd: 2.37 Airsd: 2.37 Airsd: 2.37 Airsd: 2.37 Airsd: 2.37 Airsd: 2.37 Airsd: 2.37 Airsd: 2.37 Channel 1 Channel 2 Mean: 84 Airsd: 2.44 Airsd: 2.44 Airsd: 2.44 Airsd: 2.47 Airsd: 2.47 Air								
O:1349 O:1349 ROI Area: 160.85 ROI Area: 160.85 Composites	Mean: 362 Air M: 4.26 Airsd: 2.49 Air M: 3.77 Airsd: 2.49 Airsd: 2.26 0107 0145 0107 0344 ROI Area: 160.85 ROI Area: 160.85 Channel 3 Channel 4							

RF Coil Performance Evaluation Coil: Flex Coil - Large Mfg.: Siemens Mfg. Date: Coil ID: Phantom: Large Cylinder	Test Date: 5/6/2008 Model: 08625761 Revision:
SE 300 20 T 36 256 2 Coil Mode: FL Port 4 Analysis of Composit	
Measured Data	Calculated Results
Interstitled DataLabelMeanMaxMinBack groundNoise SDNoise TypeN8191,346369-0.03.03NEM.A8191,3453699.42.41Air	Mean SNR Normal- ized Max SNR Uni- formity A 191.2 193.9 314.2 43.0% 222.7 225.9 365.7 43.1%
Analysis of Uncombine	ed Images
Measured Data	Calculated Results
Ch Mean Max Noise SD Noise Type 1 80 184 2.42 Air 2 503 1,057 2.48 Air 3 364 1,039 2.56 Air 4 436 849 2.33 Air	Mean SNR % of Mean Max SNR % of Max 21.7 16% 49.8 18% 132.9 100% 279.3 100% 93.2 70% 266.0 95% 122.6 92% 238.8 85%
Channel #1 is dead.	
Mean: 819 ROI M: -0.04 ROIsd: 3.03 Mean: 819 Air M: 9.42 Joing Jacobia Airsd: 2.41 Joing Jacobia Joing Jacobia ROI Area: 161.27 ROI Area: 161.27	Channel 1Channel 2Mean: 80Air M: 4.07 Airsd: 2.42Mean: 503Air M: 4.20 Airsd: 2.48Image: Image:

RF Coil Performance Evaluatio	<u>n</u>			Test Date:	5/6/2008			
Coil: Flex Coil - Small	A.		Model:	08625779				
Mfg.: Siemens			2	Revision :				
Mfg. Date: Coil ID: 1651			SN:	1143				
Phantom: Small Bottle					# of Channels			
SequenceTRTEPlaneFOVNxNyBWNSAThicknessGapSE30020T2525625625613-								
Coil Mode: FS Port 1								
Analy	sis of Com	posite l	mage					
Measured Data				Calculated	d Results			
Back Label Mean Max Min groun	Noise d SD	Noise Type	Mean SNR	Normal- ized	Max Uni- SNR formity			
N 1,518 2,132 805 0.4	3.43	NEMA	313.0	577.4	439.6 54.8%			
A 1,518 2,131 805 14.3	3.56	Air	279.4	515.5	392.3 54.8%			
Analysi	s of Uncon	nbined I	mages					
Measured Data		-	Ca	alculated F	Results			
Noise Nois Ch Mean Max SD Type	e e		Mean SNR	% of Mean	Max % of SNR Max			
1 673 1,705 3.53 Ain	•		124.9	98%	316.5 100%			
2 713 1,725 3.65 Ain	·		128.0	100%	<u>309.7</u> <u>98%</u>			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	·		108.7	<u>85%</u> 94%	<u>307.7</u> <u>97%</u>			
				J				
Mean: 1518 ROI M: 0.38 ROIsd: 3.43 02162 ROI Area: 84.68 ROI Area: 84.68 ROI Area: 84.68	Air M: 14 Airsd: 3.5 02:61 68	.27 56	Channe lean: 673 Ai Ai 0 1705 100 Area: 84.68 lean: 599 Ai Ai 0 175 0 1	el 1 r M: 6.21 rsd: 3.53 e 205 ROI Arr r M: 6.33 rsd: 3.61 ROI Arr ROI Arr	Channel 2 713 Air M: 6.46 Airsd: 3.65 0226 01725 ea: 84.68 651 Air M: 6.26 Airsd: 3.54 0220 0662 ea: 84.68 Channel 4			

RF Coil Performance Evaluation Coil: Flex Coil - Small Mfg.: Siemens Mfg. Date: Coil ID: Phantom: Small Bottle Sequence TR TE Plane SE 300 20 T 25 256	Test Date: 5/6/2008 Model: 08625779 Revision:						
Coil Mode: FS Port 3 Analysis of Composite Image Calculated Results Measured Data Calculated Results Measured Data Calculated Results Label Mean Max Min ground SD Type Noise Type Mean Normal- Max Uni-formity N 1.503 2.131 802 0.2 3.09 NEMA 344.0 634.6 487.7 54.7%							
A 1,503 2,131 801 14.0 3.53 A A A A A A A A A A B A A A A A A B B A A B A A B	Air 279.0 514.7 395.6 54.6% nbined Images						
Ch Mean Max SD Noise Type 1 672 1,685 3.50 Air 2 698 1,688 3.56 Air 3 583 1,565 3.48 Air 4 658 1,656 3.59 Air	Mean % of SNR Max Mean % of SNR Max Max % of Max 125.8 98% 315.5 100% 310.7 98% 109.8 85% 294.7 93% 302.3 96%						
Mean: 1503 ROI M: 0.23 ROIsd: 3.09 Mean: 1503 Air M: 14. Airsd: 3.5 Airsd: 3.5 Image: Composites ROI Area: 84.69	O3Channel 1Channel 2Mean: 672Air M: 6.16 Airsd: 3.50Mean: 698Air M: 6.28 Airsd: 3.50Image: Construction of the structure o						

RF Coil Performance Evaluation Coil: Flex Coil - Small Mfg.: Siemens Mfg. Date: Coil ID: Phantom: Small Bottle Sequence TR TE SE 300 20 T 25 26 2 Coil Mode: FS Port 4	Test Date: 5/6/2008 Model: 08625779 Revision:
Analysis of Composi	te Image
Measured Data	Calculated Results
Back Noise Nois Label Mean Max Min ground SD Type	e Mean Normal- Max Uni- e SNR ized SNR formity
N 1,514 2,175 805 1.1 3.80 NEM A 1,513 2,171 806 14.2 3,57 Air	A 281.8 519.8 404.8 54.0% 277.7 512.3 208.5 54.1%
Analysis of Uncombine Measured Data	Ed Images Calculated Results
Mean Max SD Noise Type 1 656 1,655 3.44 Air 2 705 1,696 3.60 Air 3 604 1,615 3.63 Air 4 667 1,692 3.62 Air	Mean % of SNR Max Mean % of SNR Max Max % of Max 125.0 97% 315.3 100% 128.3 100% 308.7 98% 109.0 85% 291.5 92% 120.7 94% 306.3 97%
Mean: 1514 ROI M: 1.05 ROIsd: 3.80 Bos OLArea: 84.70 Mean: 1513 Air M: 14.20 Airsd: 3.57 Bos Airsd: 3.5	Channel 1Channel 2Mean: 656Air M: 6.07 Airsd: 3.44Mean: 705Air M: 6.33 Airsd: 3.600 16550 16550 16500 16500 Area: 84.70Mean: 607Air M: 6.42 Airsd: 3.62Mean: 667Mean: 604Air M: 6.42 Airsd: 3.63Mean: 667Air M: 6.39 Airsd: 3.620 Area: 84.70Mean: 667Air M: 6.29 Airsd: 3.62Mean: 6670 Area: 84.70Mean: 667Air M: 6.39 Airsd: 3.620 Area: 84.70Mean: 667Air M: 6.42 Airsd: 3.620 Area: 84.70Air M: 6.42 Airsd: 3.62Air M: 6.42 Airsd: 3.620 Area: 84.70Air M: 6.42 Airsd: 3.62Air M: 6.42 Air M: 6.42 Air M: 6.42 Air M: 6.420 Area: 84.70Air M: 6.42 Air M: 6.42

RF Coil Performance Evaluation Coil: Flex Coil - Small Mfg.: Siemens Mfg. Date: Coil ID: Phantom: Small Bottle Sequence TR TE Plane FOV SE 300 20 Coil Mode: FS Port 6	Test Date: 5/6/2008 Model: 08625779 Revision:
Analysis of	Composite Image
Measured Data	Calculated Results
Back No	se Noise Mean Normal- Max Uni-
Label Mean Max Min ground S N 1.763 2.454 941 0.9 3	Type SNR ized SNR formity 9 NEMA 357.3 659.0 497.3 55.4%
A 1,762 2,452 939 16.7 4.	6 Air 277.6 512.0 386.3 55.4%
Analysis of U	combined Images
Measured Data	Calculated Results
Ch Mean Max Noise SD Noise Type 1 780 1,959 4.11 Air 2 829 1,986 4.22 Air 3 681 1,795 4.11 Air 4 777 1,948 4.20 Air	Mean SNR% of MeanMax SNR% of Max124.497%312.3100%128.7100%308.499%108.684%286.292%121.294%303.997%
Mean: 1763 ROI M: 0.94 ROIsd: 3.49 02454 ROI Area: 84.70 ROI Area: 84.70 ROI Area: 84.70 Composites	Standard Channel 1 Channel 2 Main: 780 Air M: 7.34 Mean: 829 Air M: 7.54 Joint 1 Joint 1 Joint 1 Joint 1 Joint 2 Joint 2 Joint 2 Joint 2 Joint 2

RF Coil Performance Evaluation Coil: Head Matrix Mfg.: Siemens	Test Date: 5/6/2008 Model: 08622644 Revision:							
Mfg. Date: Coil ID: 1646	SN: 1362							
Phantom: ACR Phantom	# of Channels 12							
SequenceTRTEPlaneFOVNxSE30020T40256	NyBWNSAThicknessGap25625.613-							
Coil Mode: HEA,HEP								
Analysis of Con	nposite Image							
Measured Data	Calculated Results							
Back Noise Label Mean Max Min ground SD	Noise Mean Normal- Max Uni- Type SNR ized SNR formity							
N 2,050 2,485 1,780 0.2 2.65	NEMA 547.1 394.2 663.2 83.5%							
A 2,050 2,485 1,778 11.9 2.92	Air 460.1 331.5 557.7 83.4%							
Analysis of Unco	mbined Images							
Measured Data								
Ch Mean Max SD Type	Mean % of Max % of SNR Mean SNR Max							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
3 970 2,083 3.06 Air	207.7 100% 446.1 95%							
4 887 1,880 2.87 Air	202.5 97% 429.3 91%							
$\frac{3}{4} \frac{370}{887} \frac{2,083}{1,880} \frac{3.06}{2.87} \frac{A1r}{Air} \frac{207,7}{202,5} \frac{100\%}{97\%} \frac{440,1}{429,3} \frac{95\%}{91\%}$								

RF Coil Performance Evaluation Coil: Neck Matrix Image: Neck Matrix </th <th>Test Date: 5/6/2008 Model: 08622677 Revision: </th>	Test Date: 5/6/2008 Model: 08622677 Revision:							
Analysis of Compos	ite Image							
Measured Data	Calculated Results							
Back Noise Nois Label Mean Max Min ground SD Typ	se Mean Normal- Max Uni- e SNR ized SNR formity							
N 1,529 3,495 616 0.2 2.45 NEM	IA 441.4 203.5 1008.9 30.0%							
A 1,529 3,493 616 9.5 2.27 Air	r 441.4 203.6 1008.4 30.0%							
Analysis of Uncombin	ed Images							
Measured Data	Calculated Results							
Ch Mean Max SD Noise Type 1 630 2,056 2.22 Air 2 520 1,827 2.29 Air 3 492 1,832 2.20 Air 4 439 1,477 1.52 Air 5 343 1,319 1.42 Air 6 585 1,866 2.12 Air	Mean % of Max % of SNR Mean SNR Max 186.0 98% 606.9 95% 148.8 79% 522.8 82% 146.6 77% 545.7 86% 189.3 100% 636.8 100% 158.3 84% 608.7 96% 180.8 96% 576.8 91%							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								

RF Coil Performan Coil: Neck Ma Mfg.: Siemens Mfg. Date:	ormanc atrix inder TE 20 HEP; NE1,	e Eval	1647 FOV 50	Nx 256	Ny 256	BW 25.6	Test Date: Model: Revision: SN: 	5/6/2008 08622677 1358 # of Channels 4 hickness Gap 3 -
	Mo	asurad	Data		iiposite	innage	Calculate	d Rosults
Label Mean	Max	Min	Back	Noise SD	Noise Type	Mean SNR	Normal- ized	Max Uni- SNR formity
N 1,562	3,031	622	-0.5	4.86	NEMA	227.3	104.8	441.1 34.1%
A 1,562	3,036	623	9.4	2.26	Air	452.9	208.9	880.3 34.1%
		Δ	nalvsis (of Unco	mhined	Images		
Me	asured I	Data				C	alculated	Results
Ch Mean 1 590 2 495 3 554 4 415 5 377 6 671	Max 1,794 1,377 1,755 1,281 1,165 2,361	Noise SD 2.20 2.11 2.20 1.54 1.44 2.29	Noise Type Air Air Air Air Air Air			Mean SNR 175.7 153.7 165.0 176.6 171.6 192.0	% of Mean 92% 80% 86% 92% 89% 100%	Max % of Max 534.4 79% 427.7 63% 522.8 77% 545.1 81% 530.2 78% 675.6 100%
0 0/1 2,301 2.23 AIP 10076 073.0 10076 Image: 10076 073.0 10076 073.0 10076 Image: 10076 Image: 10076 Image: 10076								

RF Coil Performane Coil: Neck Matrix Mfg.: Siemens Mfg. Date:	uation 1647 FOV 36	Nx 256	Ny 256	BW 25.6	Test Date: Model: Revision: SN: 	5/6/2008 08622677 1358 # of Channels 4 Thickness Gap 3	
		Analysis	s of Con	nposite	Image		
M	easured	Data			-	Calculate	ed Results
Label Mean Max	Min	Back ground	Noise SD	Noise Type	Mear SNR	n Normal- ized	Max Uni- SNR formity
N 1,912 2,356	1,410	0.0	5.37	NEMA	251.8	3 224.0	310.3 74.9%
A 1,912 2,359	1,415	18.5	4.00	Air	313.2	2 278.7	386.5 75.0%
	A	nalysis	of Unco	mbined	Images		
Measured	Data	_			(Calculated	Results
ChMeanMaxH1P8241,541H2P8531,683H3P9501,722H4P9401,813NE14575NE24572	Noise SD 3.98 4.15 4.16 4.33 2.64 2.87	Noise Type Air Air Air Air Air Air Air			Mean SNR 135.7 134.7 149.6 142.3 11.2 10.3	% of Mean 91% 90% 100% 95% 7% 7%	Max % of SNR Max 253.7 92% 265.8 97% 271.3 99% 274.4 100% 18.6 7% 16.4 6%
NE2 45 72 2.87 Air 10.3 7% 16.4 6% The low signal in channels NE 1 & 2 is normal for this slice acquired in the superior portion of the head coil							

RF Coil Performance Evaluation Coil: Neck Matrix Test I Mfg.: Siemens Image: Siemens Image	Date: 5/6/2008 odel: 08622677 sion:						
Analysis of Composite Image							
Measured Data Calcu	lated Results						
Back Noise Noise Mean Norr Label Mean Max Min ground SD Type SNR ize	nal- Max Uni- ed SNR formitv						
N 1,165 1,427 805 0.9 5.56 NEMA 148.2 131	.8 181.5 72.1%						
A 1,165 1,426 801 18.4 4.00 Air 190.9 169	0.8 233.6 71.9%						
Analysis of Uncombined Images							
Measured Data Calcula	ted Results						
Noise Noise Mean % of	Max % of						
Ch Mean Max SD Type SNR Mean							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 140.7 78%						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	144.3 77%						
H4P 469 1,010 4.34 Air 70.8 68%	152.5 81%						
NE1 285 466 2.68 Air 69.7 67%	113.9 61%						
NE2 462 832 2.90 Air 104.4 100%	188.0 100%						
$\underbrace{NE2}_{V} \underbrace{V2}_{V} \underbrace{V2} \underbrace{V2}_{V} \underbrace{V2}_{V} \underbrace{V2}_{V} $							

RF Coil Performar	nce Evaluation						
Coile Shouldon Annoy Longo					Test Date:	5/6/2008	
Mfg.: Invivo					Model: <u>8023020</u>		0
Mig. <u>11/1/2008</u> Coil ID: 1655					SN:		 1
Phantom: Small Bottle					•	# of Channels	s 4
Sequence TR	E Plane FOV	Nv	Nv	BW	NSA TH	nicknoss Ga	
SE 300	$\begin{array}{c c} \hline \\ \hline $	256	256	25.6		3 -	
	Analysis	s of Comp	osite Im	age			
	Aleasured Data	N!	N - !	Maan		d Results	ni
Label Mean Max	Min ground	SD	Noise Type	SNR	ized	SNR for	ni- mity
N 1,314 1,868	<u>583</u> -0.3	2.14 N		434.2	556.3	617.3 47. 637.9 47	6%
A 1,514 1,007		1.72		440.3	374.3	037.3 47.	0 /0
	Analysis	of Uncom	bined Im	ages	-11-41	D	
Measure		-	<u> </u>	Gi Mean	% of	Results Max %	of
Ch Mean Max	SD Type	1		SNR	Mean	SNR M	ax
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.75 Air 1.87 Air	-		296.5	40%	$ 181.6 34 \\ 533.7 10 $	0%
3 584 985	2.00 Air			191.3	65%	322.7 60)%
4 719 892	1.69 Air	J		278.8	94%	345.9 65	5%
Mean: 1314 ROI M: - ROIsd: 2 583 668 ROI Area: 87.05	0.28 Mean: 1314 .14 583 	Air M: 6.76 Airsd: 1.92	ROI ROI	Channe n: 313 Ai 163 163 Area: 87.05 n: 584 Ai 242 Area: 87.05 Channe	el 1 r M: 2.80 rsd: 1.75 S5 ROI A rsd: 2.00 ROI A ROI A ROI A	Channel 2 846 Air M: 3.05 Airsd: 1.87 0320 01523 (1523 rea: 87.05 719 Air M: 2.68 Airsd: 1.69 0392 (1523	

RF Coil Performance Evaluation							
	Test Date: <u>5/6/2008</u>						
Coil: Shoulder Array - Large	Model: <u>8623626</u>						
Mfg.: Invivo	Revision:						
Mrg. Date: 1/1/2008 Coil ID: 1655	SN: <u>S001221</u>						
Phantom: Small Bottle	# of Channels						
SequenceTRTEPlaneFOVNxNyBWNSAThicknessGapSE30020C3625625625613-							
Coil Mode: <u>SHL</u>							
Analysis of Composi	te Image						
Measured Data	Calculated Results						
Back Noise N	e Mean Normal- Max Uni- SNR ized SNR formity						
N 935 2,145 357 0.1 1.17 NEM	A 565.2 502.8 1296.6 28.5%						
A 935 2,146 357 3.9 1.13 Air	542.2 482.4 1244.5 28.5%						
Analysis of Uncombine	ed Images						
Measured Data	Calculated Results						
Noise Noise Ch Mean Max SD Type	Mean % of Max % of						
1 390 947 0.95 Air	Sink Mean Sink Max 269.0 78% 653.2 56%						
2 521 1,760 0.99 Air	344.9 100% 1165.0 100% 252.1 70% 441.0 20%						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	Channel 1 Channel 2						
	Mean: 390 Air M: 1.63 Mean: 521 Air M: 1.74 Airsd: 0.95 Airsd: 0.99						
Mean: 935 ROI M: 0.11 Mean: 935 Air M: 3.93	760						
ROISa: 1.17 Airsa: 1.13	9947						
O2145 O2146							
	ROI Area: 104.03 ROI Area: 104.03						
O357 O357 Mean: 436 Air M: 1.91 Mean: 424 Air M: 1.54 Airsd: 1.05 Airsd: 0.92							
Airsa: 1.05 Airsa: 0.92							
BOLArea: 104.03							
ROI Area: 104.03 ROI Area: 104.03							
Composites	ROI Area: 104.03 ROI Area: 104.03						
	Channel 3 Channel 4						

l

<u>RF Coll Performance Evaluation</u>	Test Date: 5/6/2008
Coil: Shoulder Array - Small	Model: 8622719
Mfg.: Invivo	Revision:
Mfg. Date: 1/1/2008 Coil ID: 1656	SN: S001210
Phantom: Small Bottle	# of Channels
Sequence TR TE Plane FOV Ny I	Av BW NSA Thickness Gan
$\begin{bmatrix} SE & 300 & 20 & T & 30 & 256 \end{bmatrix}$	1 3 -
Coil Mode: SHS	
Analysis of Composi	te Image
Measured Data	Calculated Results
Back Noise Nois Label Mean Max Min ground SD Typ	e Mean Normal- Max Uni- e SNR ized SNR formity
N 1,430 2,131 554 -0.1 2.09 NEM	IA 483.9 613.3 721.1 41.3%
A 1,430 2,131 554 7.4 2.09 Air	448.4 568.3 668.2 41.3%
Analysis of Uncombin	ed Images
Measured Data	Calculated Results
Noise Noise Ch Moan Max SD Type	Mean % of Max % of
$\begin{bmatrix} 1 \\ 412 \\ 737 \\ 1.82 \\ \hline \text{Air} \end{bmatrix}$	SNR Mean SNR Max 148.3 56% 265.4 51%
2 798 1,559 1.98 Air	264.1 100% 516.0 100%
3 725 1,173 2.08 Air	228.4 86% 369.6 72%
4 800 1,057 2.03 Air	
	Channel 1 Channel 2 Mean: 412 Air M: 2.92 Mean: 798 Air M: 3.27
Mean: 1430 ROI M: -0.09 Mean: 1430 Air M: 7.35	Airsd: 1.82 Airsd: 1.98
ROIsd: 2.09 Airsd: 2.09	
	172 9-37 285 9 559
0554 02131 0554 02131	ROI Area: 86.61 ROI Area: 86.61
	Mean: 725 Air M: 3.42 Mean: 800 Air M: 3.33 Airsd: 2.08 Airsd: 2.03
	216 01 957
HOTATEA: 60.61 HOTATEA: 66.61	
Composites	
	Channel 3 Channel 4

PE Coil Porformanco Evaluation							
<u>RF Coll Fertormance Evaluation</u>	Test Date: 5/6/2008						
Coil: Shoulder Array - Small	Model: 8622719						
Mfg.: Invivo	Revision:						
Mfg. Date: 1/1/2008 Coil ID: 1656	SN: S001210						
Phantom: Small Bottle # of Channels 4							
SequenceTRTEPlaneFOVNxSE30020C36256	NyBWNSAThicknessGap25625.0613-						
Coil Mode: SHS							
Analysis of Comp	osite Image						
Measured Data	Calculated Results						
Back Noise I Label Mean Max Min ground SD	Noise Mean Normal- Max Uni- Type SNR ized SNR formity						
N 1,138 2,805 429 -0.5 1.29 N	KEMA 623.9 549.1 1537.8 26.5%						
A 1,139 2,806 430 4.4 1.25	Air 597.1 525.6 1471.0 26.6%						
Analysis of Uncom	bined Images						
Measured Data	Calculated Results						
Noise Noise Ch Mean May SD Type	Mean % of Max % of						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNR Mean SNR Max 292.2 78% 689.4 55%						
2 617 2,080 1.08 Air	374.4 100% 1262.1 100%						
3 505 965 1.09 Air 4 593 1.714 1.07 Air	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							

l

RF Coil Performance Evaluation Coil: Spine Matrix Image: Spine Matrix <th< th=""><th>Test Date: 5/6/2008 Model: 08622743 Revision: </th></th<>	Test Date: 5/6/2008 Model: 08622743 Revision:
	oito Imogo
Analysis of Compo	Site image
Back Noise No	Dise Mean Normal- Max Uni-
Label Mean Max Min ground SD Ty	/pe SNR ized SNR formity
N 607 1,130 182 -0.1 1.94 NE A 667 1,132 182 4.1 1.71 A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Analysis of Uncombi	ned Images
Measured Data	Calculated Results
Noise Noise	Mean % of Max % of
$\begin{bmatrix} 1 \\ 421 \\ 1,129 \\ 1.65 \\ \text{Air} \end{bmatrix}$	SNR Mean SNR Max 167.2 100% 448.4 100%
2 394 1,059 1.72 Air	150.1 90% 403.5 90%
Mean: 667 ROI M: -0.07 ROIsd: 1.94 01130 01132	ean: 421 Air M: 2.58 Mean: 394 Air M: 2.73 Airsd: 1.65 20 01129 01059
O182 O182 ROI Area: 428.31 ROI Area: 428.31 ROI Area: 428.31	014rea: 428.31 ROI Area: 428.31
Composites	Channel 1 Channel 2

RF Coil Performance Evaluation Coil: Spine Matrix Mfg.: Siemens Mfg. Date: Coil ID: Phantom: Long Cylinder Sequence TR TE SE 300 20 S 50 256 Coil Mode: SP34	Test Date: 5/6/2008 Model: 08622743 Revision:
Analysis of Compos	ite Image
Measured Data	Calculated Results
Back Noise No Labol Moan Max Min ground SD Ty	se Mean Normal- Max Uni-
N 688 1,190 186 0.0 1.69 NEI	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
A 688 1,190 186 4.3 1.75 A	ir 257.6 118.8 445.6 27.0%
Analysis of Uncombin	ned Images
Measured Data	Calculated Results
Ch Mean Max Noise SD Noise Type 3 438 1,183 1.72 Air 4 404 1,069 1.75 Air	Mean % of Mean Max % of SNR Max 166.9 100% 450.7 100% 151.3 91% 400.3 89%
Mean: 688 ROI M: 0.03 ROIsd: 1.69 Mean: 688 Air M: 4.28 Airsd: 1.75 Ø 1190 Ø 1190 Ø 1190 Ø 1190 Ø 100 Area: 428.33 Ø 100 Ø 100 Scomposites B 100 B 100 B 100	m: 438Air M: 2.75Airsd: 1.72Mean: 404Airsd: 1.72Jone: 428.33Channel 1Channel 2

RF Coil Performance Evaluation Test Date: 5/6/2008	•
Coil: Spine Matrix Model: 0862274	3
Mfg.: <u>Siemens</u> Revision:	
Mfg. Date: Coil ID: 1648 SN: 1351	
Phantom: Long Cylinder # of Channels	
SequenceTRTEPlaneFOVNxNyBWNSAThicknessGaSE30020S5025625625613-	р
Coil Mode: SP56	
Analysis of Composite Image	
Measured Data Calculated Results	
Back Noise Noise Mean Normal- Max Ur Label Mean Max Min ground SD Type SNR ized SNR forr	ni- nity
N 737 1,233 199 0.5 1.84 NEMA 283.3 130.6 473.9 27.4	8%
A 736 1,232 199 4.5 1.80 Air 267.9 123.6 448.5 27.3	8%
Analysis of Uncombined Images	
Measured Data Calculated Results	
Ch Mean Max SD Noise Type Mean % of SNR Max % 5 450 1,226 1.73 Air 170.5 100% 464.4 100 6 451 1.195 1.88 Air 157.2 92% 416.5 90	of ax)%
	70
Mean: 737 BOI M: 0.47 Mean: 736 Air M: 4.50 Mean: 450 Air M: 2.76 Mean: 451 Air M	.3.04
ROIsd: 1.84 Airsd: 1.80 Airsd: 1.73 Airsd: 1.73	: 1.88
01232 01232	
	5
ROI Area: 427.42 ROI Area: 427.42 ROI Area: 427.42 ROI Area: 427.42	
Composites Channel 1 Channel 2	

RF Coil Performance Evaluation Coil: Spine Matrix Test Date: 5/6/20 Mfg.: Siemens Model: 08622 Mfg. Date: Coil ID: 1648 SN: 135 Phantom: Long Cylinder # of Channel	108 743 1 els 24
SequenceTRTEPlaneFOVNxNyBWNSAThicknessOSE 300 20 S 50 256 256 25.6 1 3	<u>-</u>
Coil Mode: SP78	
Analysis of Composite Image	
Measured Data Calculated Results	
Back Noise Noise Mean Normal- Max Label Mean Max Min ground SD Type SNR ized SNR fo	Uni- ormity
N 726 1,257 197 0.2 2.14 NEMA 239.9 110.6 415.4 2	7.1%
A 726 1,255 197 4.5 1.80 Air 264.3 121.9 456.9 2	7.1%
Analysis of Uncombined Images	
Measured Data Calculated Results	
Ch Mean Max SD Noise Type Mean % of SNR Max Max 7 456 1,250 1.81 Air 165.1 100% 452.6 1 8 426 1.153 1.70 Air 156.0 94% 422.1 1	% of <u>Max</u> 100%
0 420 1,155 1.79 Air 150.0 94% 422.1	9370
Mean: 726 ROI M: 0.22 Mean: 726 Air M: 4.48 Mean: 456 Air M: 2.92 Mean: 426 Air M: 4.48 ROIsd: 2.14 Airsd: 1.80 Airsd: 1.81 Airsd: 1.81 Airsd: 1.81 Airsd: 1.81	r M: 2.87 rsd: 1.79
Image: Note of the second s	153

RF Coil P	erforman	ce Eval	uation		157		Test Date	: 5/0	5/2008	
Coil: Wrist Coil								: 86	8625621	
Mfg.: Invivo Revision:										
Mfg. Date: 9/1/2007 Coil ID: 1653 SN: \$1056								1056		
Phantom: Wrist Phantom # of Channels 8										
Sequence TR TE Plane FOV Nx Ny BW NSA Thickness Gap										
SE 300 20 T 12 256 256 1 3 -										
Coil Mode: W	'R8									
_			Analysis	— s of Con	nposite	Image				
	М	easured	Data		-		Calculate	ed Result	S	
Label Moa	n May	Min	Back	Noise	Noise	- Me	ean Normal-	Max	Uni- formity	
N 1,78	3 2,208	1,467	0.5	4.04	NEMA	31	2.1 2499.0	386.5	79.8%	
A 1,78	3 2,208	1,467	22.0	4.36	Air	26	68.0 2145.6	331.9	79.8%	
		Δ	nalvsis	of Unco	mbined	Images				
	Measured	Data	y			<u>g</u>	Calculated	Results		
Ch Maa	n May	Noise	Noise	-		Mean	% of	Max	% of	
	n Max 5 1,535	3.95	Air	1		105.3	<u>Mean</u> 99%	254.7	Max 96%	
2 705	1,562	4.34	Air			106.4	100%	235.9	89%	
3 501	1,422	3.75	Air			87.5	82%	248.5	93%	
4 680	1,378	4.44	Air			100.4	94%	203.4	76%	
5 410	1,562	3.96	Air			68.8	65%	258.5	97%	
6 491	1,495	3.68	Air			87.4	82%	266.2	100%	
7 450	1,220	3.45	Air	-		86.6	81%	231.7	87%	
	1,154	3.29				81.9	//%	229.9	86%	
Channel # 5 (phy	sical channel #	8) seems to	be about 20	1% lower th	an compar	able chanr	els. Not signific	ant enough t	o require	
service.										
				Cha	nnel 1	Channel	2 Channel	3 Chan	nel 1	
				Mean: 635	Air M: 7.00 M	ean: 705 Air	M: 7.73 Mean: 501 Ai	M: 6.64 Mean: 680	Air M: 7.93	
Mean: 1783	ROI M: 0.53 Mea	an: 1783	Air M: 22.03		Airsd: 3.95	Air	sd: 4.34 Ai	rsd: 3.75	Airsd: 4.44	
	NOISU. 4.04		Allsu. 4.30	O 1555	221		278	22	01575	
						0.1552	0166	346		
O1467 O1467 ROLArea: 24.61 ROLArea: 24.61 ROLArea: 24.61 ROLArea: 24.61										
02208		02208		Mean: 416	Air M: 7.03 Me Airsd: 3.96	ean: 491 Air Air	M: 6.51 Mean: 456 Ai sd: 3.68 Ai	Mean: 411 rsd: 3.45	Air M: 5.76 Airsd: 3.29	
					70					
ROI Area: 24.61	RO	Area: 24.61		OTER		B171	9 185	01220 D1154	138	
Composites BOLAres: 24.61 BOLAres: 24.61 BOLAres: 24.61 BOLAres: 24.61										
				Cha	nnel 5	Channel	6 Channel	7 Chan	inel 8	
RF Coil Performance Evaluation Coil Wrist Coil Mfg.: Invivo Mfg. Date: 9/1/2007 Coil ID: 1653 Phantom: Wrist Phantom Sequence TR TE Plane FOV	Nx Ny	Test Date: 5/6/2008 Model: 8625621 Revision:								
---	---	--	--	--	--	--	--	--	--	--
SE 300 20 S 20	256 256	5 25.6 1 3 -								
Coil Mode: <u>WR8</u> Analysis of Composite Image										
Measured Data Calculated Results										
Back Label Mean Max Min ground	Noise Noise SD Type	Mean Normal- Max Uni- SNR ized SNR formity								
N 1,198 1,726 306 -0.1	1.27 NEMA	<u>667.1</u> <u>1922.8</u> <u>961.1</u> <u>30.1%</u>								
A 1,198 1,727 306 4.7	1.26 Air	623.1 1795.9 898.2 30.1%								
Analysis of Uncombined Images										
	-	Calculated Results								
Ch Mean Max SD Type		SNR Mean SNR Max								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
3 283 437 0.91 Air		203.8 60% 314.7 42%								
4 347 648 0.95 Air		239.4 70% 447.0 60%								
5 433 757 1.03 Air		275.5 80% 481.6 64% 224.5 224.5 224.5 224.5								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
7 240 360 0.87 Air 8 323 605 0.98 Air		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	Channel 1	Channel 2 Channel 3 Channel 4								
Mean: 1198 ROI M: -0.13 Mean: 1198 Air M: 4.70 ROIsd: 1.27 Airsd: 1.26	Airsd: 1.12 Airsd: 1.12 1282 E.49 ROI Area: 44.37	Airsd: 1.03 Airsd: 1.03 Airsd: 0.91 Airsd: 0.91 Airsd: 0.91 Airsd: 0.95 Airsd: 0.95 B48 B01 Area: 44.37 R01 Area: 44.37 R01 Area: 44.37								
ROI Area: 44.37 ROI Scomposites	Mean: 433 Air M: 1.39 Aired: 1.03 Aired: 1.03 07/57 07/57 107 ROI Area: 44.37 I	Mean: 587 Air M: 1.62 Mean: 246 Air M: 1.07 Mean: 323 Air M: 1.28 Airsd: 1.15 Airsd: 0.87 Airsd: 0.87 Airsd: 0.98 Airsd: 0.98 C1250 C360 C360 C360 C360 C360 ROI Area: 44.37 ROI Area: 44.37 ROI Area: 44.37 ROI Area: 44.37 ROI Area: 44.37								
	Channel 5	Channel 6 Channel 7 Channel 8								

RF Co	oil Perf	orman	ce Eval	<u>uation</u>		15			Toot Doto	5/	6/2008
Coil:	Wrist (Coil				(0)			Model:	80	525621
Mfg.:	Invivo						×	-	Revision	:	
Mfg. Date:	9/1/2007		Coil ID:	1653			-		SN	:	51056
Phantom:	Wrist Ph	antom								# of Cha	annels <u>8</u>
Seque	nce TF		Plane	FOV	Nx	Ny		BW	NSA T	hickness	Gap
SE	30	0 20	C	20	256	256		25.6	1	3	-
Coil Mod	de: WR8										
Analysis of Composite Image											
Measured Data Calculated Results											
Label	Mean	Max	Min	Back ground	Noise SD	Noise Type		Mean SNR	Normal- ized	Max SNR	Uni- formity
N	1,214	1,896	362	0.0	0.96	NEMA	[894.3	2577.7	1396.7	32.1%
A	1,214	1,895	362	4.8	1.26	Air		631.4	1819.8	985.6	32.1%
Analysis of Uncombined Images											
	M	easured	Data		_			Са	lculated	Results	
Ch	Mean	Max	Noise SD	Noise Type			Me Sl	an NR M	% of Mean	Max SNR	% of Max
1	327	775	0.98	Air]		21	8.7	74%	518.2	62%
2	475	1,086	1.05	Air			29	6.4 1	00%	677.8	82%
3	415	790	1.12	Air			24	2.8	82%	462.2	56%
4	343	1,070	0.09	Air			25	7.8	0370	/0/.0 830.5	95%
6	286	890	1.04		-		18	0.2	61%	560.8	68%
7	388	1.066	0.99	Air			25	6.8	87%	705.6	85%
8	436	794	1.14	Air			25	0.6	85%	456.4	55%
					0		~		0		
					Cha Mean: 327	Air M: 1.29 M	Char	Air M: 1.43	Mean: 415 Air	3 Chai M: 1.56 Mean: 343	Air M: 1.13
Mean: 121	I4 ROI BOIs	M: 0.01 Mea	n: 1214	Air M: 4.76 Airsd: 1.26		Airso: 0.98		Airsd: 1.05	Airs	6:1.12	Airsa: 0.89
						07/75	010	36	0790		01070
						12			270		41
	O 1898		0 1895		ROI Area: 92.	70 R0	DI Area: 92.	70 F	ROI Area: 92.70	ROI Area: S	92.70
					Meán: 376	Air M: 1.20 M Airsd: 0.92	an: 286	Air M: 1.42 Airsd: 1.04	viean: 388 Air Airs	m: 1.32 Mean: 436 d: 0.99	Air M: 1.60 Airsd: 1.14
	0362		L3	32	$\langle \cdot \rangle$		0 88	•)	9	066	0784
ROI Area:	92.70	ROI	Area: 92.70			01166					
	(Composite	s		ROI Area: 92	15 70 B(DI Area; 92	37 70	ROI Area: 92.70	ROI Area: 5	92.70
					Cha	nnel 5	Char	nnel 6	Channel	7 Chai	nnel 8

Appendix A: Magnet Homogeneity Field Maps Siemens Site Siemens Verio 3T - 3 central planes Measured May 6, 2008 wih 32 cm water filled sphere

Axial									
DIAMETER	R MIN	MAX	RANGE	PPM	MEAN	STDEV			
10	.1	6.9	6.7	0.05	0.43	1.43			
15	-5.4	6.9	12.3	0.10	2.03	2.81			
20	-14.0	6.9	20.9	0.16	-1.16	4.86			
25	-27.2	6.9	34.1	0.27	-5.32	7.64			
28	-36.0	6.9	42.9	0.34	-8.35	9.72			
30	-42.6	6.9	49.5	0.39	-10.53	11.20			

Superior

Coronal								
DIAMETE	R MIN	MAX	RANGE	PPM	MEAN	STDEV		
10	-11.6	8.4	20.1	0.16	-2.31	3.99		
15	-22.1	20.8	42.9	0.34	-1.41	8.99		
20	-39.7	40.7	80.5	0.63	-0.45	15.62		
25	-60.8	86.9	147.7	1.16	0.17	24.68		
28	-76.6	126.8	203.5	1.59	-0.82	31.16		
30	-86.6	127.1	213.7	1.67	-2.95	32.90		

Sagittal										
DIAMETER	MIN	MAX	RANGE	PPM	MEAN	STDEV				
10	-7.7	5.5	13.3	0.10	-4.03	2.82				
15	-8.5	19.7	28.3	0.22	-0.98	5.91				
20	-10.2	47.7	58.0	0.45	2.98	10.11				
25	-34.1	103.1	137.2	1.07	7.19	17.09				
28	-34.1	138.6	172.7	1.35	9.19	20.76				
30	-34.1	138.6	172.7	1.35	9.06	20.70				

Appendix A: Magnet Homogeneity Field Maps Siemens Site Siemens Verio 3T - 3 central planes Measured May 6, 2008 wih 24 cm oil filled sphere

Axial									
DIAMETER	MIN	MAX	RANGE	PPM	MEAN	STDEV			
10	-1.4	1.7	3.1	0.02	0.17	0.57			
15	-1.7	3.5	5.2	0.04	0.23	0.66			
20 -	-14.2	7.2	21.5	0.17	0.07	1.80			
23 -	-53.5	7.6	61.1	0.48	-0.76	4.50			

Coronal									
DIAMETER	MIN	MAX	RANGE	PPM	MEAN	STDEV			
10	-2.2	1.6	3.8	0.03	0.13	0.59			
15	-5.7	2.5	8.2	0.06	-0.14	1.13			
20	-26.9	9.8	36.7	0.29	-0.66	3.88			
23	-49.0	15.2	64.2	0.50	-2.00	7.67			

Sagittal								
DIAMETER	MIN	MAX	RANGE	PPM	MEAN	STDEV		
10	-2.6	2.7	5.3	0.04	0.10	0.83		
15	-10.0	5.7	15.8	0.12	-0.06	2.02		
20	-38.9	20.4	59.3	0.46	-0.67	5.75		
23	-58.4	29.7	88.2	0.69	-2.02	10.08		

Appendix A: Magnet Homogeneity Field Maps Siemens Site Siemens Verio 3T Measured May 6, 2008 wih 32 cm water filled sphere

Appendix A: Magnet Homogeneity Field Maps Siemens Site Siemens Verio 3T Measured May 6, 2008 wih 24 cm oil filled sphere This sphere has susceptibility defect.

Appendix A: Magnet Homogeneity Field Maps Siemens Site Siemens Verio 3T Measured May 12, 2008 wih 32 cm water filled sphere

Appendix A: Magnet Homogeneity Field Maps Siemens Site Siemens Verio 3T Measured May 12, 2008 wih borrowed 24 cm oil filled sphere

Water Phantom

Axial Field Plots

Oil Phantom

Axial Field Plots

Spin Echo : Lo SAR TR/TE = 500/12BW = 25.6 KHz nex = 1 Scan time: 2:09

Spin Echo : Fast RF TR/TE = 500/12BW = 25.6 KHz nex = 1 Scan time: 2:09

T1 FLASH Flip angle = 70° TR/TE = 100/3.3BW = 40.96 KHz nex = 4Scan time: 1:43

Coil Used: Head Matrix

	Sagittal Locator					
1	Length of phantom, end to en	nd (mn 148± 2)	14	7.5	=	calculated field
		(SE 500/20)	(SE 2000/20)	(SE 2000/80)	(Site T1)	(Site T2)
	Slice Location #1	ACR T1 #7	ACR PD #8	ACR T2 #8	Site T1 Flash 19	Site T2 17
2	Resolution	0.9	1.0	1.0	0.9	0.9
3	(1.10, 1.00, 0.90 mm)	0.9	1.0	1.0	0.9	0.9
4	Slice Thickness Top	47.7	49.2	38.6	60.4	67.9
5	(fwhm in mm) Bottom	49.8	48.8	37.8	67.9	69.1
6	Calculated value 5.0±0.7	4.87	4.90	3.82	6.39	6.85
7	Wedge (mm) = + = -	-0.4	-0.4	-0.4	0.1	-1.0
8	Diamator (mm) $(100 2)$	190.5	190.0	190.0	190.2	189.9
9	$\Theta = \Theta_{11} \Theta_{12} \Theta_{$	188.4	188.3	188.3	188.4	188.5
	Slice Location #5]				
10	\square	190.7	190.2	190.1	190.3	190.0
11	Diameter (mm) (190+2) Θ	188.4	188.3	188.3	188.5	188.5
12		188.1	188.3	188.3	188.5	188.5
13	Í Ó	189.8	189.7	189.6	189.8	189.8
	Slice Location #7	1		•		
14	Signal Big ROI	2499	2592	1081	1963	1748
15	(mean only) High	2713	2799	1177	2298	1937
16	Low	2066	2170	884	1584	1435
17	Uniformity (>87.5%)	86.5%	87.3%	85.8%	81.6%	85.1%
18	Background Noise Top	17.0 ± 6.70	10.3 ± 2.83	8.8 ± 2.58	5.6 ± 3.28	12.7 ± 3.76
19	Bottom	18.2 ± 6.21	12.5 ± 3.67	10.3 ± 2.91	6.9 ± 3.77	14.2 ± 4.07
20	(mean ±std dev) Left	20.2 ± 7.56	13.9 ± 4.27	10.8 ± 3.15	7.3 ± 5.29	$0.0 \ \pm \ 0.00$
21	Right	23.6 ± 8.37	13.2 ± 3.50	11.4 ± 3.21	8.8 ± 4.29	0.0 ± 0.00
22	Ghosting Ratio (<2.5%)	0.2%	0.1%	0.1%	0.1%	0.8%
23	SNR (no spec)	387	798	394	557	?
	Low Con Detectability]				
24	Slice Location #8 1.4%	10	10	10	9	1
25	Slice Location #9 2.5%	10	10	10	10	9
26	Slice Location #10 3.6%	10	10	10	10	10
27	Slice Location #11 5.1%	10	10	10	10	10
28	Total # of Spokes (>=9)	40	40	40	39	30
	Slice Location #11					
29	Wedge (mm) = + = -	-2.0	-2.1	-2.1	-1.8	-3.2
30	Slice Position Error	-1.7	-1.7	-1.8	-1.8	-2.1

This page lists the images obtained using the first pass attempt at ACR submission sequences. The ACR T2 would fail slice thickness (too thin). The reviewer would then look at the Site T2 which would also fail (too thick.) The site T1 would also fail image uniformity (but it would not be measured in a normal submission.)

Verio

Test Date:

5/6/2008

Sequence parameters

Coil Used:Head Matrix

56

Test Date:	5/6/2008
rest Dute.	0/0/2000

Test ID **272**

Study Descrip tion	Pulse Sequence (ETL)	TR (ms)	TE (ms)	FOV (cm)	Phase Sample Ratio	Number of Slices	Thick- ness (mm)	Slice Gap	NSA (Nex)	Freq Matrix	Phase Matrix	Band Width (kHz)	Scan Time (min:sec)
ACR T1 #7	SE Prescan 2D Dist.	500	20	25	1	11	5	5	1	256	256	19.2	2:09
ACR PD #8	Dual SE Prescan 2D Dist.	2000	20	25	1	11	5	5	1	256	256	19.2	8:32
ACR T2 #8	Dual SE Prescan 2D Dist.	2000	80	25	1	11	5	5	1	256	256	19.2	8:32
Site T1 Flash 19	FLASH 70°	350	2.58	24	1	11	5	5	1	320	288	51.2	1:41
					_								
Site T2 17	TSE(19)	3800	98	24	.8	11	5	5	1	320	288	32.0	0:46

Magnet ID: 212

Coil ID: 1646

TestID: 272

Verio

ACR T17

ACR PD 8

ACR T2 8

Flash 19

Site T2 17

Coil Used: Head Matrix

	Sagittal Locator					
1	Length of phantom, end to er	nd (mn 148± 2)	14	7.5	=	calculated field
		(SE 500/20)	(SE 2000/20)	(SE 2000/80)	(Site T1)	(Site T2)
	Slice Location #1	No Filters #10	Prescan Only #9	Prescan+2D #13	B1 Only #11	B1 + 2D #15
2	Resolution	1.0	1.0	1.0	1.0	1.0
3	(1.10, 1.00, 0.90 mm)	1.0	1.0	1.0	1.0	1.0
4	Slice Thickness Top	49.3	48.8	49.0	49.7	50.3
5	(fwhm in mm) Bottom	50.0	49.7	50.0	50.0	47.0
6	Calculated value 5.0±0.7	4.96	4.92	4.95	4.98	4.86
7	Wedge (mm) = + = -	-0.3	-0.4	-0.4	-0.3	-0.4
8	Diameter (mm) (100+2) \square	190.6	190.6	190.0	190.6	190.0
9	$\Theta = \Theta_{1}^{\text{Diameter (IIIII)}} \Theta$	188.9	188.9	188.3	188.9	188.3
	Slice Location #5]				
10	Φ	192.0	192.0	190.1	192.0	190.1
11	Diameter (mm) (190+2) Θ	190.0	190.0	188.3	190.0	188.3
12	\oslash	190.1	190.1	188.3	190.1	188.3
13	× ×	191.5	191.5	189.7	191.5	189.7
	Slice Location #7	1	-			
14	Signal Big ROI	2332	2472	2500	2235	2280
15	(mean only) High	2931	2684	2710	2427	2485
16	Low	1950	2038	2071	2041	2061
17	Uniformity (>87.5%)	79.9%	86.3%	86.6%	91.4%	90.7%
18	Background Noise Top	14.9 ± 3.73	11.3 ± 3.14	11.5 ± 3.03	17.2 ± 4.41	17.9 ± 4.39
19	Bottom	15.7 ± 4.03	12.9 ± 3.55	13.7 ± 3.59	15.8 ± 4.09	16.5 ± 4.10
20	(mean ±std dev) Left	16.0 ± 4.00	14.5 ± 4.72	13.9 ± 4.44	14.6 ± 4.06	15.1 ± 4.27
21	Right	18.0 ± 4.55	15.4 ± 4.63	16.6 ± 4.37	15.7 ± 4.17	15.4 ± 3.64
22	Ghosting Ratio (<2.5%)	0.1%	0.1%	0.1%	0.1%	0.1%
23	SNR (no spec)	601	739	755	543	576
	Low Con Detectability]				
24	Slice Location #8 1.4%	10	10	10	10	10
25	Slice Location #9 2.5%	10	10	10	10	10
26	Slice Location #10 3.6%	10	10	10	10	10
27	Slice Location #11 5.1%	10	10	10	10	10
28	Total # of Spokes (>=9)	40	40	40	40	40
	Slice Location #11	1				
29	Wedge (mm) = + = -	-2.0	-2.0	-2.1	-2.0	-2.1
30	Slice Position Error	-1.7	-1.6	-1.7	-1.7	-1.7

All of these images were different versions of the ACR T1 sequence with different filter options. The unfiltered image would definitely fail image uniformity. All of the other sequences pass easily. The X gradient (L/R) while within spec is not as well calibrated as the Y gradient. (This is unusual for Siemens systems.)

Verio

Test Date:

5/6/2008

Sequence parameters

Coil Used:Head Matrix

63

Study Descrip tion	Pulse Sequence (ETL)	TR (ms)	TE (ms)	FOV (cm)	Phase Sample Ratio	Number of Slices	Thick- ness (mm)	Slice Gap	NSA (Nex)	Freq Matrix	Phase Matrix	Band Width (kHz)	Scan Time (min:sec)
No Filters #10	SE - No filters	500	20	25	1	11	5	5	1	256	256	25.6	2:09
Prescan Only #9	SE Prescan No 2D	500	20	25	1	11	5	5	1	256	256	25.6	2:09
Prescan +2D #13	SE Prescan w/ 2D	500	20	25	1	11	5	5	1	256	256	25.6	2:09
			-						-				
B1 Only #11	SE - B1 no 2D	500	20	25	1	11	5	5	1	256	256	25.6	2:09
					-								
B1 + 2D	SE - B1	500	20	25	1	11	5	5	1	256	256	25.6	2:09

Magnet ID: 212

#15

w/2D

Coil ID: 1646

TestID: 273

Test Date:

Test ID 273

5/6/2008

Verio

ACR T1 10 B1 Filtered No 2D

ACR T1 9 - Prescan - No 2D

ACR T1 13

ACR T1 11 - B1 filtered No 2D

ACR T1 15

Coil Used: Head Matrix

	Sagittal Locator									
1	Length of phantom, end to er	d (mn 148± 2)	14	7.7	=	calculated field				
		(SE 500/20)	(SE 2000/20)	(SE 2000/80)	(Site T1)	(Site T2)				
	Slice Location #1	B1 Weak B3	B1 Medium B4	B1 Strong B5	PD Fast RF B6	T2 Fast RF B6				
2	Resolution	1.0	1.0	1.0	1.0	1.0				
3	(1.10, 1.00, 0.90 mm)	1.0	1.0	1.0	1.0	1.0				
4	Slice Thickness Top	49.6	50.3	50.0	59.5	50.1				
5	(fwhm in mm) Bottom	44.8	44.9	46.0	50.8	43.8				
6	Calculated value 5.0±0.7	4.71	4.75	4.79	5.48	4.67				
7	Wedge (mm) = + = -	-0.1	-0.1	-0.0	0.2	0.2				
8	$D_{interactor}(mm)$ (100+2)	190.5	190.5	190.5	190.0	190.0				
9	Θ	188.4	188.4	188.4	188.4	188.3				
	Slice Location #5									
10	Φ	190.5	190.5	190.5	190.0	190.0				
11	Diameter (mm) (190+2) Θ	188.5	188.5	188.5	188.4	188.4				
12	(1)	188.1	188.1	188.1	188.3	188.3				
13	Ő	189.7	189.7	189.7	189.7	189.6				
	Slice Location #7									
14	Signal Big ROI	2309	2219	2128	2709	1245				
15	(mean only) High	2658	2436	2239	2929	1347				
16	Low	1942	2010	1995	2387	1066				
17	Uniformity (>87.5%)	84.4%	90.4%	94.2%	89.8%	88.4%				
18	Rackground Noise Top	21.7 ± 7.88	22.2 ± 7.93	23.4 ± 8.36	11.9 ± 3.42	10.5 ± 2.92				
19	Bottom	20.4 ± 6.20	20.9 ± 6.09	20.9 ± 6.20	13.8 ± 3.72	11.8 ± 3.12				
20	(mean ±std dev) Left	18.7 ± 7.55	19.5 ± 8.09	21.0 ± 8.64	15.8 ± 4.43	13.9 ± 3.68				
21	Right	20.9 ± 7.26	20.4 ± 7.58	18.7 ± 7.17	15.8 ± 4.87	13.2 ± 3.44				
22	Ghosting Ratio (<2.5%)	0.1%	0.1%	0.1%	0.1%	0.2%				
23	SNR (no spec)	328	317	292	759	412				
	Low Con Detectability									
24	Slice Location #8 1 4%	10	10	10	10	0				
25	Slice Location #9 2.5%	10	10	10	10	10				
26	Slice Location #10 3.6%	10	10	10	10	10				
27	Slice Location #11 5.1%	10	10	10	10	10				
28	Total # of Spokes (-0)	40	10	10	10	20				
	10tal # 01 5pokes (~->)	40	40	40	40	33				
	Slice Location #11					I				
29	vveage (mm) = + r = -	-1.9	-2.0	-1.9	-1.3	-1.3				
30	Slice Position Error	-1.9	-1.9	-1.9	-1.5	-1.5				

The first 3 sequences are evaluating the new image normalization feature known as B1 filtering. Using either weak or medium filtering provides adequate results. I wouldn't use Strong.

Verio

5/6/2008

Test Date:

Sequence parameters

Coil Used:Head Matrix

70

Study Descrip tion	Pulse Sequence (ETL)	TR (ms)	TE (ms)	FOV (cm)	Phase Sample Ratio	Number of Slices	Thick- ness (mm)	Slice Gap	NSA (Nex)	Freq Matrix	Phase Matrix	Band Width (kHz)	Scan Time (min:sec)
B1 Weak B3	SE - B1 filter Weak	500	20	25	1	11	5	5	1	256	256	25.6	2:09
B1 Medium B4	SE - B1 filter Medium	500	20	25	1	11	5	5	1	256	256	25.6	2:09
B1 Strong B5	SE - B1 filter Strong	500	20	25	1	11	5	5	1	256	256	25.6	2:09
PD Fast RF B6	Dual SE Fast RF	2000	20	25	1	11	5	5	1	256	256	25.6	8:32
T2 Fast RF B6	Dual SE Fast RF	2000	80	25	1	11	5	5	1	256	256	15.6	8:32

Magnet ID: 212

Coil ID: 1646

TestID: 274

Test Date: 5/6/2008

Test ID 274

Verio

ACR T1 Weak

ACR T1 Medium

ACR T1 Strong

ACR PD Fast

ACR T2 Fast

Coil Used: Head Matrix

	Sagittal Locator						
1	Length of phantom, end to en	d (mn 148±2)	14	7.7	= calculated fi		
		(SE 500/20)	(SE 2000/20)	(SE 2000/80)	(Site T1)	(Site T2)	
	Slice Location #1	PD Normal B7	T2 Normal B7	PD Lo SAR B8	T2 Lo SAR B8		
2	Resolution	1.0	1.0	1.0	1.0		
3	(1.10, 1.00, 0.90 mm)	1.0	1.0	1.0	1.0		
4	Slice Thickness Top	53.1	39.0	61.3	48.8		
5	(fwhm in mm) Bottom	44.6	34.2	52.7	43.4		
6	Calculated value 5.0±0.7	4.85	3.64	5.66	4.59		
7	Wedge (mm) = + = -	-0.1	0.0	-0.1	-0.0		
8	Diameter(mm)(100/2)	190.0	190.0	190.0	190.0		
9	Diameter (iiiii) (190 ± 2) Θ	188.4	188.3	188.4	188.4		
	Slice Location #5						
10	Π	190.0	190.0	190.0	190.0		
11	Diameter (mm) (190+2) Θ	188.3	188.3	188.3	188.3		
12		188.3	188.3	188.3	188.3		
13	Ŏ	189.6	189.6	189.6	189.6		
	Slice Location #7	1					
14	Signal Big ROI	2531	1055	2743	1260		
15	(mean only) High	2734	1148	2977	1377		
16	Low	2130	861	2238	956		
17	Uniformity (>87.5%)	87.6%	85.7%	85.8%	82.0%		
18	Background Noise Top	11.7 ± 3.05	10.6 ± 2.93	11.7 ± 3.23	10.3 ± 2.84	±	
19	Bottom	13.5 ± 3.72	11.5 ± 3.26	13.6 ± 3.68	11.6 ± 3.15	±	
20	(mean ±std dev) Left	17.5 ± 4.48	12.5 ± 3.30	14.2 ± 4.08	13.5 ± 3.65	±	
21	Right	15.5 ± 4.18	13.0 ± 3.52	16.5 ± 4.46	13.5 ± 3.73	±	
22	Ghosting Ratio (<2.5%)	0.2%	0.2%	0.1%	0.2%		
23	SNR (no spec)	748	341	794	421		
	Low Con Detectability			•			
24	Slice Location #8 1.4%	10	9	10	10		
25	Slice Location #9 2.5%	10	10	10	10		
26	Slice Location #10 3.6%	10	10	10	10		
27	Slice Location #11 5.1%	10	10	10	10		
28	Total # of Spokes (>=9)	40	39	40	40		
	Slice Location #11]					
29	Wedge (mm) = + = -	-1.9	-1.8	-1.9	-1.8		
30	Slice Position Error	-1.8	-1.8	-1.8	-1.8		

These images represent the use of a Low SAR and Normal RF pulses for the Dual Echo ACR T2 sequence. Note that the Normal RF pulse has a slice thickness of only 3.64 mm (should be 5). (Noticeably lower SNR.). This sequence would definitely fail the ACR submission process while the Lo SAR would fail the image uniformity... Looks like you need to use Fast RF with the ACR T2.

76

Verio

Test Date:

5/6/2008

Sequence parameters

Coil Used:Head Matrix

77

Study Descrip tion	Pulse Sequence (ETL)	TR (ms)	TE (ms)	FOV (cm)	Phase Sample Ratio	Number of Slices	Thick- ness (mm)	Slice Gap	NSA (Nex)	Freq Matrix	Phase Matrix	Band Width (kHz)	Scan Time (min:sec)
PD Normal B7	Dual SE	2000	20	25	1	11	5	5	1	256	256	25.6	8:32
T2 Normal B7	Dual SE	2000	80	25	1	11	5	5	1	256	256	25.6	8:32
PD Lo SAR B8	Dual SE	2000	20	25	1	11	5	5	1	256	256	25.6	8:32
T2 Lo SAR B8	Dual SE	2000	80	25	1	11	5	5	1	256	256	25.6	8:32

Magnet ID: 212

Coil ID: 1646

TestID: 275

Test Date: 5/6/2008

Test ID **275**

Verio

ACR PD Normal

ACR T2 Normal

ACR PD Lo SAR

ACR T2 Lo SAR

Coil Used: Head Matrix

	Sagittal Locator					
1	Length of phantom, end to	end (mn 148±2)	14	7.7	=	calculated field
		(SE 500/20)	(SE 2000/20)	(SE 2000/80)	(Site T1)	(Site T2)
	Slice Location #1	PD LoSAR B1 13	T2 LoSAR B1 13	Site T1 B11	Site T1 B14	
2	Resolution	1.0	1.0	1.1	1.0	
3	(1.10, 1.00, 0.90 mm)	1.0	1.0	1.0	1.0	
4	Slice Thickness To	p 62.2	49.4	51.4	51.9	
5	(fwhm in mm) Botto	n 53.2	43.8	44.3	47.1	
6	Calculated value 5.0±0.7	5.74	4.64	4.76	4.94	
7	Wedge (mm) = + =	-0.1	-0.0	-0.0	0.1	
8	Diamotor (mm) $(190+2)$) 190.0	190.0	190.4	190.0	
9) 188.4	188.3	188.5	188.4	
	Slice Location #5					
10	(D 190.1	190.1	190.4	190.0	
11	Diameter (mm) (190+2)	188.3	188.3	188.5	188.4	
12	(188.3	188.2	188.4	188.3	
13] (189.7	189.6	189.6	189.6	
	Slice Location #7					
14	Signal Big RC	PI 2445	1081	2665	2569	
15	(mean only) Hig	h 2671	1174	2886	2787	
16	Lo	v 2217	957	2200	2122	
17	Uniformity (>87.5%	90.7%	89.8%	86.5%	86.5%	
18	Background Noise To	p 16.7 ± 4.19	15.7 ± 3.9	14.3 ± 4.70	$10.3~\pm~2.82$	±
19	Botto	m 17.0 \pm 4.09	15.1 ± 3.9	16.4 ± 5.16	11.9 ± 3.31	±
20	(mean ±std dev) Le	ft 17.7 \pm 4.02	13.1 ± 3.56	17.3 ± 6.75	$16.9~\pm~3.97$	±
21	Rig	nt 15.5 ± 3.86	13.4 ± 3.5	19.4 ± 5.98	15.1 ± 4.33	±
22	Ghosting Ratio (<2.5%)	0.0%	0.2%	0.1%	0.2%	
23	SNR (no spec)	621	306	541	838	
	Low Con Detectability					
24	Slice Location #8 1.4	% 10	9	10	10	
25	Slice Location #9 2.5	% 10	9	10	10	
26	Slice Location #10 3.6	76 10	10	10	10	
27	Slice Location #11 5.1	% 10	10	10	10	
28	Total # of Spokes (>=9)	40	38	40	40	
	Slice Location #11					
29	Wedge (mm) = + =	-1.9	-1.9	-1.6	-1.7	
30	Slice Position Error	-1.8	-1.8	-1.6	-1.8	

This site T1 sequence failed high contrast resolution. With a 320x256 matrix this should NOT have happened. I can't explain...

Verio

5/6/2008

Test Date:

Sequence parameters

Coil Used:Head Matrix

83

Study Descrip tion	Pulse Sequence (ETL)	TR (ms)	TE (ms)	FOV (cm)	Phase Sample Ratio	Number of Slices	Thick- ness (mm)	Slice Gap	NSA (Nex)	Freq Matrix	Phase Matrix	Band Width (kHz)	Scan Time (min:sec)
PD LoSAR B1 13	Dual SE	2000	20	25	1	11	5	5	1	256	256	25.6	8:32
T2 LoSAR B1 13	Dual SE	2000	80	25	1	11	5	5	1	256	256	25.6	8:32
Site T1 B11	SE Prescan & 2D	500	10	25	1	11	5	5	1	320	256	25.6	3:12
Site T1 B14	SE Prescan & 2D	400	10	24	1.5	11	5	5	1	256	256	25.6	2:34

Magnet ID: 212

Coil ID: 1646

TestID: 277

Test Date: 5/6/2008

Test ID _____277

ACR PD Lo SAR B1 13

ACR T2 Lo SAR B1 13

Site T1 B11

Site T1 B14

Coil Used: Head Matrix

	Sagittal Locator						
1	Length of phantom, end to e	nd (mn 148± 2)	14	7.7	= calculated fiel		
		(SE 500/20)	(SE 2000/20)	(SE 2000/80)	(Site T1)	(Site T2)	
	Slice Location #1	TSE(19) LoSAR	TSE(19) Fast	TSE(16)	T2 Blade		
2	Resolution	0.9	0.9	1.0	0.9		
3	(1.10, 1.00, 0.90 mm)	0.9	0.9	1.0	0.9		
4	Slice Thickness Top	71.1	70.2	71.4	68.7		
5	(fwhm in mm) Bottom	n 67.5	63.5	63.4	58.1		
6	Calculated value 5.0±0.7	6.93	6.67	6.72	6.30		
7	Wedge (mm) = + = -	-0.3	0.2	0.1	0.0		
8	\square	190.0	190.0	190.0	190.6		
9	\ominus	188.7	188.6	188.5	188.0		
	Slice Location #5	7	-		-		
10	ſ) 190.0	190.0	190.1	190.7		
11	Diamotor (mm) (190+2)	188.7	188.6	188.5	188.8		
12		188.5	188.4	188.4	188.5		
13	6	189.8	189.8	189.8	189.9		
	Slice Location #7	7					
14	Signal Big RO	1714	1666	1732	1387		
15	(mean only) High	1904	1808	1883	1522		
16	Low	1368	1431	1483	1166		
17	Uniformity (>87.5%)	83.6%	88.4%	88.1%	86.8%		
18	Packaround Naiso To	28.4 ± 2.85	8.5 ± 2.84	6.9 ± 2.28	18.4 ± 12.7	±	
19	Background Noise Botton	19.3 ± 2.99	9.4 ± 2.99	7.7 ± 2.73	14.5 ± 10.1	±	
20	(mean ±std dev) Lef	t 16.0 ± 5.79	21.0 ± 8.02	16.8 ± 5.61	18.4 ± 10.5	±	
21	Righ	t 21.1 ± 8.76	26.4 ± 9.22	13.5 ± 6.36	20.9 ± 11.9	 ±	
22	Ghosting Ratio (<2.5%)	0.6%	0.9%	0.5%	0.2%		
23	SNR (no spec)	587	572	691	124		
	Low Con Detectobility	7	0,12	0,1	121		
24	Slice Location #8 1 407		7	0	2		
24	$\frac{1.4\%}{1.4\%}$	5	/	9	3		
20	Slice Location #9 2.5%	9	10	10	8		
20	Since Location #10 3.6%		10	10	<u> </u>		
21	Since Location #11 5.1%		10	10	10		
28	1 otal # of Spokes (>=9)	34	31	39	30		
	Slice Location #11]					
29	Wedge (mm) = + = -	-2.6	-1.9	-1.7	-1.9		
30	Slice Position Error	-2.3	-2.1	-1.9	-2.0		

Ghosting of the LoSAR version of the TSE(19) sequence made the low contrast detection difficult in slice #8. The measured slice profile is excessive for ALL of these T2 sequences. Fortunately, the ACR T2 will pass ACR requirements so the Site T2 will not be evaluated for slice thickness.

Verio

Test Date:

5/6/2008

Sequence parameters

Coil Used:Head Matrix

Test Date: 5/6/2008

Test ID **278**

Study Descrip tion	Pulse Sequence (ETL)	TR (ms)	TE (ms)	FOV (cm)	Phase Sample Ratio	Number of Slices	Thick- ness (mm)	Slice Gap	NSA (Nex)	Freq Matrix	Phase Matrix	Band Width (kHz)	Scan Time (min:sec)
TSE(19) LoSAR	TSE(19) Lo SAR	4000	98	24	1	11	5	5	2	320	288	32.0	2:09
TSE(19) Fast	TSE(19) Fast RF	4000	100	24	1	11	5	5	2	320	288	32.0	2:09
1 451	Tustili												
TSE(16)	TSE(16) Fast RF	4000	97	24	1	11	5	5	2	256	256	25.6	2:08
					I								'I
T2 Blade	TSE BLADE (35)	5860	118	24	1	11	5	5	1	320	320	58.4	
r			1	1	1			r	r				1
													.[

Magnet ID: 212

Coil ID: 1646

TestID: 278

Verio

Site T2 Lo SAR

Site T2 Fast

Site T2 TSE(16)

Site T2 Blade

Appendix D: Explanation of RF Coil Testing Report

Introduction

The primary goal of RF coil testing is to establish some sort of base line for tracking coil performance over time. The most common measure is the Signal to Noise Ratio or SNR. In addition, we can look at overall signal uniformity, ghosting level (or better - lack of ghosting) and in the case of phased array coils we look at the SNR of each and every channel and at symmetry between channels. Unfortunately, there is no single best method for measuring SNR. Below I explain the different methods used and the rationale for each.

<u>SNR</u>

One needs to measure the signal in the phantom (either mean or peak or both) and then divide that by the background noise. Measuring the signal is fairly straightforward, the noise can be more problematic. The simplest method is to measure the standard deviation (SD) in the background 'air'. However, MRI images are the magnitude of complex data. The noise in the underlying complex data is Gaussian but it follows a Rician distribution when the magnitude is used. The true noise can be estimated by multiplying the measured SD by 1.526.

During the reconstruction process, most manufacturers perform various additional operations on the images, This could include geometric distortion correction, low pass filtering of the k-space data resulting in low signal at the edge of the images, RF coil intensity correction (PURE, CLEAR, SCIC, etc), and other processing during the combination of phased array data and parallel imaging techniques. All of these methods distort the background noise making it impossible to obtain an accurate (and reproducible) estimate of the image noise in the air region. The alternative is to use a method which I shall refer to as the NEMA (National Electrical Manufacturers Association) method. The signal in the phantom area is a sum of the proton signal and noise. Once the signal to noise ratio exceeds 5:1, the noise in the magnitude image is effectively Gaussian. To eliminate the proton signal, you acquire an image twice and subtract them. The measured SD in the phantom region should now be the true SD times the square root of 2. When determining the SNR using the NEMA method, calculate the mean signal of the average of the two source images then divide by .7071 x the SD measured in the same area as the mean signal.

Unfortunately, this doesn't always work. It is absolutely imperative that the RF channel scalings, both transmit and receive, be identical with both scans. Any ghosting in the system is not likely to repeat exactly for both scans and will cause a much higher SD. Finally, the phantom needs to be resting in place prior to the scan long enough for motion of the fluid to have died down. Depending on the size and shape of the phantom, this could take any where from 5 to 20 minutes.

One of the most common causes of ghosting is vibration from the helium cold-head. The best way to eliminate this artifact is to turn off the cold head, which will increase helium consumption. Because this vibration is periodic, the ghosting is usually of an N over 2 (N/2) nature. The affect inside the signal region of the phantom can be minimized by using a FOV that is twice the diameter of the phantom (measured in the PE direction.) If the noise is to be measured in the air, then be sure to NOT make measurements to either side of the phantom in the PE direction.

Scan parameters also significantly affect measured SNR. For most of the testing performed in this document I used a simple Spin Echo with a TR of 300, a TE of 20 and a slice thickness of 3mm and a receiver BW of 25.73KHz (200 Hz/pixel). The FOV was varied depending on the size of the coil and the phantom used. All of the parameters used for each test can be found on each page immediately below the coil description.

Report Layout

Each page of this report lists the data from a single test. The top third of the page describes the coil and phantom information, followed by the scan parameters used. The middle third contains the numbers measured and calculated results. This section will contain one table if the coil being tested is a single channel coil (i.e. quadrature or surface coils) and two tables if it is a multi-channel phased array coil. The entries in the table will be described further below. The bottom section contains a few lines of comments (if necessary), a picture of the coil with the phantom as used for the testing and one or more of the images that were used for the measurements.

There is usually one image for each composite image measurement and one image for each separate channel measurement. Each image shows the ROI (red line) where the mean signal was measured and two smaller ROIs (green lines) where the signal minimum and maximum was found. In the top left corner of each image is the mean signal in the large ROI. The bottom left corner contains the large ROI's area (in mm²). The top right corner contains two numbers a mean and a standard deviation. If the NEMA method was used, then the top right corner will list the mean and SD of the large ROI (labeled ROI M and ROIsd) applied to the subtraction image. If the noise was measured in the background air the the numbers are labeled Air M and AirSD.

Data Tables

The meaning of most of the entries in the data table are should be self evident with a few exceptions. The first column in each table is labeled "Label". In the composite analysis, this field may be empty or contain some sort of abbreviation to identify some aspect of the testing. Some possibilities are the letter N for NEMA, A for Air, L for Left, R for Right, C for CLEAR, NoC for No CLEAR. In the Uncombined Image table, the label usually contains the channel number or similar descriptor. The column labeled "Noise Type" will be either Air or SubSig which stands for Subtracted Signal, *i.e.* the NEMA method. Both tables contain a column for Mean SNR and Max SNR which are the Mean or Max signal divided by the SD of the noise scaled by either 1.526 (Air) or 0.7071 (NEMA).

Composite Image Table: The final two columns in this table are "Normalized" and "Uniformity". It can be rather difficult to compare the performance of different coils particularly if different scan parameters are used. (Of course, it's even more difficult from one scanner to another.) I have standardized most of my testing to use a spin echo with a TR/TE of 300/20msec and a thickness of 3 mm. The FOV changes to depending on the size of the phantom used although I try to use a FOV that is at least twice the diameter of the phantom as measured in the PE direction. For one reason or another, a change may be made in the scan parameters (either accidentally or intentionally such as turning on No Phase Wrap to eliminate aliasing, etc.). In order to make it easier to compare SNR values I calculate a "Normalized" SNR value. This value is theoretically what the SNR would be if a FOV of 30cm, 256x256 matrix, 1 average, receiver BW of 15.6 KHz and slice thickness of 3mm had been used. Obviously, the final number is affected by the T1/T2 values of the phantoms used as well as details of the coil and magnet field strength but it can be useful in certain situations.

The "Uniformity" value is defined by the ACR as 1 - (max-min)/(max+min). This is most important when looking at volume coils or for evaluating the effectiveness of surface coil intensity correction algorithms (such as pre or post Normalization).

Uncombined Image Table: This table has two columns labeled "% of Mean" and "% of Max". When analyzing multi-channel coils it is important to understand the relationship between the different channels, the inherent symmetry that usually exists between channels. In a 8 channel head or 4 channel torso phased array coil, all of the channels are usually have about the same SNR. These two columns list how the SNR (either Mean or Max) of each channel compares to the SNR of the channel with the maximum value.